©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 92

Mathematics

1. The value of a, such that the volume of the parallelopiped formed by the vectors
$\hat{i}+\hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum, is
A. 3
B. $-\frac{1}{3}$
C. $\frac{1}{2}$
D. -2

Answer: C

- Watch Video Solution

2. $A a n d B$ toss a fair coin each simultaneously 50 times.

The probability that both of them will not get tail at the same toss is $(3 / 4)^{50}$ b. $(2 / 7)^{50}$ c. $(1 / 8)^{50}$ d. $(7 / 8)^{50}$
A. $\left(\frac{3}{4}\right)^{10}$
B. $\left(\frac{2}{7}\right)^{10}$
C. $\left(\frac{1}{4}\right)^{10}$
D. $\left(\frac{1}{2}\right)^{10}$

Answer: A

- Watch Video Solution

3. A plane $P=0$ passes through the line of intersection of the planes $x+y+z+3=0$ and $x-y+z-2=0$.

If the plane P divides the ratio $2: 1$ internally and the equation of the plane is $a x-2 y+b z=c$ where $a, b, c \in N$, then the value of $3 a+4 b-5 c$ is equal to
A. 22
B. 32
C. 42
D. 10

Answer: B

- Watch Video Solution

4. Let A and B are two non-singular matrices of order 3
such that $A+B=2 I$ and $A^{-1}+B^{-1}=3 I$, then AB is equal to (where, 1 is the identity matrix of order 3)
A. A
B. B
C. $\frac{2 I}{3}$
D. 21

Answer: C

- Watch Video Solution

5. Let $f(b)$ be the minimum value of the expression $y=x^{2}-2 x+\left(b^{3}-3 b^{2}+4\right) \forall x \in R . \quad$ Then, the maximum value of $f(b)$ as b varies from 0 to 4 is
A. 20
B. 19
C. 63
D. 64

Answer: B

- Watch Video Solution

6. Consider the intergral $A=\int_{0}^{1} \frac{e^{x}-1}{x} d x$ and
$B=\int_{0}^{1} \frac{x}{e^{2}-1} d x$. Then, which of the following is incorrect?
A. $B<1$
B. $A>1$
C. $B>A$
D. $A>\frac{1}{2}$

Answer: C
7. If $a, b \in R$ satisfy the equation $a^{2}+4 b^{2}-4=0$, then the minimum value of $(2 a+3 b)$ will be
A. -4
B. -5
C. -6
D. -10

Answer: B

- Watch Video Solution

8. The equation of the curve satisfying the differential equation $x^{2} d y=(2-y) d x$ and passing through $P(1,4)$ is
A. $y=x^{2}+3$
B. $y=2+2 e^{\frac{1}{x}-1}$
C. $y=\sin (x-1)+4$
D. $y=2 e^{x-1}+2$

Answer: B

D Watch Video Solution

9. The domain of $f(x)=\frac{x}{16-x^{2}}+\log _{2}\left(x^{3}-2 x\right)$ is
A. $(-\sqrt{2}, 0) \cup(\sqrt{2}, \infty)$
B. $(-\sqrt{2}, 0) \cup(\sqrt{2}, 4)$
C. $(-\sqrt{2}, 0) \cup(4,00)$
D. $(-\sqrt{2}, 0) \cup(\sqrt{2}, 4) \cup(4, \infty)$

Answer: D

D Watch Video Solution

10. Let $\mathrm{p.q}$ and r be three statements, then $(\sim p \rightarrow q) \rightarrow r$ is equivalent to
A. $(\sim p \vee r) \wedge(q \vee r)$
B. $(p \rightarrow r) \wedge(q \rightarrow r)$
C. $(\sim p \wedge r) \vee(q \vee r)$
D. $(p \rightarrow q) \rightarrow r$

Answer: B

- Watch Video Solution

11. The value of $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\left[\frac{x}{3}\right]}{\ln (1+\cot x)}$ is equal to (where, [.] denotes the greatest integer function)
A. does not exist
B. is equal to 1
C. is equal to 0
D. is equal to -1

Answer: C

- Watch Video Solution

12. A data consists of n observations : $x_{1}, x_{2}, \ldots \ldots, x_{n}$. If $\Sigma_{i=1}^{n}\left(x_{i}+1\right)^{2}=11 n$ and $\Sigma_{i=1}^{n}\left(x_{i}-1\right)^{2}=7 n$, then the variance of this data is
A. 5
B. 8
C. 6
D. 7

Answer: D
13. Which of the following is a correct statement ?
A. Continuity at $x=a$ is sufficient for differentiability
at $\mathrm{x}=\mathrm{a}$
B. Differentiability at $\mathrm{x}=\mathrm{a}$ is sufficient for continuity
at $\mathrm{x}=\mathrm{a}$
C. Existence of limit at $x=a$ is sufficient for continuity
at $\mathrm{x}=\mathrm{a}$
D. Differentiability at $\mathrm{x}=\mathrm{a}$ is necessary for existence of tangent at $\mathrm{x}=\mathrm{a}$

- Watch Video Solution

14. The term independent of x in the expansion of $\left(x-\frac{1}{x}\right)^{4}\left(x+\frac{1}{x}\right)^{3}$ is:
A. -3
B. 0
C. 1
D. 3

Answer: B

- Watch Video Solution

15. The number of ways in which four different toys and five indistinguishable marbles can be distributed between 3 boys, if each boy receives at least one toy and at least one marble, is
A. 42
B. 100
C. 150
D. 216

Answer: D

- Watch Video Solution

16. If $p^{\text {th }}, 2 p^{\text {th }}$ and $4 p^{\text {th }}$ terms of an arithmetic progression are in geometric progression, then the common ratio of the geometric progression is
A. 1
B. 2
C. 3
D. 4

Answer: B
17. The position vectors of vertices of $\triangle A B C$ are $(1,-2),(-7,6)$ and $\left(\frac{11}{5}, \frac{2}{5}\right)$ respectively. The measure of the interior angle A of the $\triangle A B C$, is,
A. $\left(75^{\circ}, 90^{\circ}\right)$
B. $\left(60^{\circ}, 75^{\circ}\right)$
C. $\left(45^{\circ}, 60^{\circ}\right)$
D. $\left(120^{\circ}, 150^{\circ}\right)$

Answer: B
18.
$x^{2}+y^{2}=a x$ and $x^{2}+y^{2}=c^{2}(c>0) \quad$ touch each other, if $\left|\frac{c}{a}\right|$ is equal to
A. 2
B. $\frac{1}{2}$
C. 1
D. None of these

Answer: C
(D) Watch Video Solution
19. The area (in sq. units) bounded by the curve $y=|x-\pi|+|x-e|$, the ordinates at its points of non

- differentiability and the x-axis is
A. $\pi+2 e$
B. $2 \pi+e$
C. $(\pi-e)^{2}$
D. $\pi^{2}-e^{2}$

Answer: C

20. If z and w are complex numbers satisfying $\bar{z}+i \bar{w}=0$ and $\operatorname{amp}(z w)=\pi$, then $\operatorname{amp}(w)$ is equal to (where, $\operatorname{amp}(w) \in(-\pi, \pi]$)
A. $\frac{\pi}{4}$
B. $\frac{-\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{3 \pi}{4}$

Answer: A

- Watch Video Solution

21.

$\left|\begin{array}{ccc}2+x & x & x^{2} \\ x & 2+x & x^{2} \\ x^{2} & x & 2+x\end{array}\right|=\frac{1}{6}(x-a)(x-b)(x-c)(x-d)$
an identity in x where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are independent of x , then
the value of $\frac{13}{25} a b c d$ is

- Watch Video Solution

22.

If
$I=\int \frac{x^{3}-1}{x^{5}+x^{4}+x+1} d x=\frac{1}{4} \ln (f(x))-\ln (g(x))+c$
(where, c is the constant of integration) and $f(0)=g(0)=1$,then the value of $f(1) \cdot g(1)$ is equal to
23. If $f: R \rightarrow\left[\frac{\pi}{3}, \pi\right)$ defined by $f(x)=\cos ^{-1}\left(\frac{\lambda-x^{2}}{x^{2}+3}\right)$ is a surjective function, then λ is equal to

D Watch Video Solution

24. The number of solutions of the equation $\tan x+\sec x=2 \cos x$ lying in the interval $[0,5 \pi]$ is

D Watch Video Solution

25. Tangents are drawn from any point on the directrix of
$y^{2}=16 x$ to the parabola. If thelocus of the midpoint of
chords of contact is a parabola, then its length (in units) of the latus rectum is

- Watch Video Solution

