© 'doubtnut

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 93

Mathematics

1. If $f(x)= \begin{cases}p x+q & : x \leq 2 \\ x^{2}-5 x+6 & : 2<x<3 \\ a x^{2}+b x+1 & : x \geq 3\end{cases}$
is
differentiable
everywhere,
then

$$
|p|+|q|+\left|\frac{1}{a}\right|+\left|\frac{1}{b}\right| \text { is equal to }
$$

A. $\frac{71}{10}$
B. $\frac{51}{10}$
C. $\frac{33}{5}$
D. $\frac{31}{5}$

Answer: A

D Watch Video Solution

2. If p and q are logical statements, then
$p \Rightarrow(\sim q \Rightarrow p)$ is equivalent to
A. $p \Rightarrow(p \Rightarrow q)$
B. $p \Rightarrow(p \wedge q)$
C. $p \Rightarrow(p \wedge q)$
D. $p \Rightarrow(p \Leftrightarrow q)$

Answer: B

D Watch Video Solution

3. In a cubicul hall $A B C D P Q R S$ with each side $10 m, G$ is the centre of the walls $B C R Q$ and T is the midpoint of the side $A B$, the angle of elevation of G at the Point T is
4. If $f(x)$ is a non - negative function such that the area bounded by $y=f(x), \mathrm{x}$ - axis and the lines $\mathrm{x}=0$ and $x=\alpha$ is $4 \alpha \sin \alpha+2$ sq. Units
($\forall \alpha \in[0, \pi]$), then the value of $f\left(\frac{\pi}{2}\right)$ is equal to
A. 0
B. 1
C. 2π
D. 8π

Answer: B

- Watch Video Solution

5. If $I_{1}=\int_{0}^{2 \pi} \sin ^{3} x d x$ and $I_{2}=\int_{0}^{1} \ln \left(\frac{1}{x}-1\right) d x$, then
A. $I_{1}+I_{2}>0$
B. $I+I_{2}<0$
C. $I_{1}<I_{2}$
D. $I_{1}=I_{2}$

Answer: D

- Watch Video Solution

6.

Let
the

$$
(y-2)=m_{1}(x-5) \text { and }(y+4)=m_{2}(x-3)
$$

lines
intersect at right angles at P (where m_{1} and m_{2} are

parameters). If locus of	
$x^{2}+y^{2}+g x+f y+7=0$,	is
$\left(\frac{g}{2}\right)^{2}+\left(\frac{f}{2}\right)^{2}-7$ is equal to	

A. 1
B. 2
C. 8
D. 10

Answer: D
7. The differential equation of the family of curves $p y^{2}=3 x-p$ is (where p is an arbitrary constant) is

$$
\begin{aligned}
& \text { A. } y \frac{d y}{d x}=y+x \\
& \text { B. } y \frac{d y}{d x}=1 \\
& \text { C. } y^{2}=\frac{d y}{d x} \\
& \text { D. } y^{2}=2 x y \frac{d y}{d x}-1
\end{aligned}
$$

Answer: D
8. If $\quad \vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{a} \cdot \vec{b}=2 \quad$ and $\vec{a} \times \vec{b}=\hat{i}+2 \hat{j}+\hat{k}$, then \vec{b} is equal to
A. $15 \hat{i}-8 \hat{j}+\hat{k}$
B. $\frac{1}{29}(15 \hat{i}-8 \hat{j}+\hat{k})$
C. $\frac{1}{5}(2 \hat{i}+\hat{j}+\hat{k})$
D. $2 \hat{i}+\hat{j}+\hat{k}$

Answer: B
9.
. If the system of equations has infinite solutions and sum of all the possible value of α in $[0,2 \pi]$ is $k \pi$, then the value of k is equal to
A. 0
B. 2
C. 4
D. 8

Answer: C
10. Two lines L_{1} and L_{2} of slops 1 are tangents to
$y^{2}=4 x$ and $x^{2}+2 y 6(2)=4$ respectively, such that
the distance d units between L_{1} and L_{2} is minimum,
then the value of d is equal to
A. $\sqrt{3}-\frac{1}{\sqrt{2}}$
B. $\sqrt{3}+\frac{1}{\sqrt{2}}$
C. $\sqrt{2}-1$
D. $\sqrt{3}+\sqrt{2}$

Answer: A
11. A bag contains 21 markers with numbers 1 to 21 . A maker is drawn at random and then replaced and then a second marker is drawn. The probability that the first number is odd and the second is even is
A. $\frac{10}{21}$
B. $\frac{11}{21}$
C. $\frac{110}{441}$
D. $\frac{100}{441}$

Answer: C
12. In $\left(33+\frac{1}{33}\right)^{n}$ if the ratio of 7th term from the beginning to the 7 th term from the end is $1 / 6$, then find the value of n.
A. 13
B. 16
C. 9
D. 23

Answer: C
13. The number of ways in which 10 boys can take positions around a circular round table, if two particular boys must not be seated side by side, is
A. 2×48 !
B. 12
C. 360
D. 7×8 !

Answer: D

14. If the equation $x^{2}=a x+b=0$ has distinct real roots and $x^{2}+a|x|+b=0$ has only one real root, then which of the following is true? $b=0, a>0 b$. $b=0, a<0$ c. $b>0, a<0$ d. $b\langle 0, a\rangle 0$
A. $b=0, a>0$
B. $b>0, a<0$
C. $b>0, a>0$
D. $b>0, a>0$

Answer: A
15. If $a=\underbrace{111 \ldots \ldots \ldots \ldots \ldots .1,}_{55 \text { times }}$
$b=1+10+10^{2}+10^{3}+10^{4}$
and
$c=1+10^{5}+10^{10}+\ldots .+10^{50}$, then
A. $b, \frac{a}{2}, c$ are in arithmetic progression
B. b, \sqrt{a}, c are in geometric progression
C. a, b, c are in geometric progression
D. a, \sqrt{b}, c are in arithmetic progression

Answer: B

D Watch Video Solution

16. The expression $\sin 27^{\circ} \cos 57^{\circ} \sin 87^{\circ}$ simplifies to
A. $\frac{\sin 9^{\circ}}{4}$
B. $\frac{\cos 9^{\circ}}{4}$
C. $\frac{\sin 9^{\circ}}{2}$
D. $\frac{\cos 9^{\circ}}{2}$

Answer: B

- Watch Video Solution

17. If $I=\int \frac{d x}{\sqrt[3]{x^{\frac{5}{2}}(1+x)^{\frac{7}{2}}}}=k f(x)+c$, where c is
the integration constant and $f(1)=\frac{1}{2^{\frac{1}{6}}}$, then the
value of $f(2)$ is
A. $6\left(\frac{2}{3}\right)^{\frac{1}{6}}$
B. $6\left(\frac{3}{2}\right)^{\frac{1}{6}}$
C. $\left(\frac{2}{3}\right)^{\frac{1}{6}}$
D. $\left(\frac{2}{3}\right)^{6}$

Answer: C

- Watch Video Solution

18. A plane $P=0$ is the perependicular bisector of the line joining the points $(2,3,4)$ and $(6,7,8)$. The perpendicular distance of $\mathrm{P}=0$ from the origin is
A. $4 \sqrt{3}$ units
B. $5 \sqrt{3}$ units
C. $6 \sqrt{3}$ units
D. $8 \sqrt{3}$ units

Answer: B

- Watch Video Solution

19. The focal chord of the parabola $y^{2}=32 x$ touches the ellipse $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{2^{2}}=1$ in the first quadrant at the point
A. $(2, \sqrt{3})$
B. $\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$
C. $\left(\frac{4}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)$
D. $\left(\frac{2}{\sqrt{2}}, \frac{4}{\sqrt{2}}\right)$

Answer: A

D Watch Video Solution

20. If m and M denotes the minimum and maximum
value of $|2 z+1|$, where $|z-2 i| \leq 1$ and $i^{2}=-1$, then the value of $(M-n)^{2}$ is equal to
A. 17
B. 34
C. 51

Answer: D

- Watch Video Solution

21. If $L=\lim _{x \rightarrow 0}\left(\frac{e^{-\frac{x^{2}}{2}}-\cos x}{x^{2} \tan ^{2} x}\right)$, then the value of

3 L is equal to

- Watch Video Solution

22. If $A_{1}, A_{2}, A_{3} \ldots \ldots \ldots . A_{20}$ are 20 skew - symmetric matrices of same order and $B=\Sigma_{r=1}^{20} 2 r\left(A_{r}\right)^{(2 r+1)}$,
then the sum of the principal diagonal elements of matrix B is equal to

- Watch Video Solution

23. If the locus of the image of the point $\left(\lambda^{2}, 2 \lambda\right)$ in the line mirror $x-y+1=0$ (where λ is a parameter) is
$(x-a)^{2}=b(y-c)$ where $a, b, c \in I$, then the value of $\left(\frac{a+b}{c+b}\right)$ is equal to
24. The number of values of a for which the curves $4 x^{2}+a^{2} y^{2}=4 a^{2}$ and $y^{2}=16 x$ are orthogonal is

D Watch Video Solution

25. The number of solutions of the equation $\log _{\sqrt{2} \sin x}(1+\cos x)=2$ in the interval $[0,5 \pi]$ is
