

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 93

Mathematics

$$\mathbf{1.} \text{ If } f(x) = \begin{cases} px + q & : x \leq 2\\ x^2 - 5x + 6 & : 2 < x < 3\\ ax^2 + bx + 1 & : x \geq 3 \end{cases}$$
is differentiable everywhere, then
$$|p| + |q| + \left|\frac{1}{a}\right| + \left|\frac{1}{b}\right| \text{ is equal to}$$

A.
$$\frac{71}{10}$$

B. $\frac{51}{10}$
C. $\frac{33}{5}$
D. $\frac{31}{5}$

Answer: A

2. If p and q are logical statements, then $p \Rightarrow (\neg q \Rightarrow p)$ is equivalent to

A.
$$p \Rightarrow (p \Rightarrow q)$$

 $\texttt{B.}\,p \Rightarrow (p \wedge q)$

$$\mathsf{C}.\,p \Rightarrow (p \wedge q)$$

 $\mathsf{D}.\,p \Rightarrow (p \Leftrightarrow q)$

Answer: B

Watch Video Solution

3. In a cubicul hall ABCDPQRS with each side 10m, G is the centre of the walls BCRQ and T is the midpoint of the side AB, the angle of elevation of G at the Point T is

4. If f(x) is a non - negative function such that the area bounded by y = f(x), x - axis and the lines x = 0 and $x = \alpha$ is $4\alpha \sin \alpha + 2$ sq. Units $(\forall \alpha \in [0, \pi])$, then the value of $f\left(\frac{\pi}{2}\right)$ is equal to

A. 0

B. 1

C. 2π

D. 8π

Answer: B

5. If
$$I_1 = \int_0^{2\pi} \sin^3 x dx \,\, ext{and} \,\, I_2 = \int_0^1 \ln igg(rac{1}{x} - 1 igg) dx$$
,

then

A.
$$I_1+I_2>0$$

 $\mathsf{B}.\,I+I_2<0$

- C. $I_1 < I_2$
- $\mathsf{D}.\,I_1=I_2$

Answer: D

6. Let the lines
$$(y-2) = m_1(x-5)$$
 and $(y+4) = m_2(x-3)$

intersect at right angles at P (where
$$m_1$$
 and m_2 are
parameters). If locus of P is
 $x^2 + y^2 + gx + fy + 7 = 0$, then
 $\left(\frac{g}{2}\right)^2 + \left(\frac{f}{2}\right)^2 - 7$ is equal to
A. 1
B. 2
C. 8
D. 10
Answer: D

7. The differential equation of the family of curves $py^2 = 3x - p$ is (where p is an arbitrary constant) is

A.
$$yrac{dy}{dx}=y+x$$

B. $yrac{dy}{dx}=1$
C. $y^2=rac{dy}{dx}$
D. $y^2=2xyrac{dy}{dx}-1$

Answer: D

8. If
$$\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}, \overrightarrow{a}. \overrightarrow{b} = 2$$
 and $\overrightarrow{a} \times \overrightarrow{b} = \hat{i} + 2\hat{j} + \hat{k}$, then \overrightarrow{b} is equal to

A.
$$15\hat{i}-8\hat{j}+\hat{k}$$

B.
$$rac{1}{29} \Big(15 \hat{i} - 8 \hat{j} + \hat{k} \Big)$$

C. $rac{1}{5} \Big(2 \hat{i} + \hat{j} + \hat{k} \Big)$

D.
$$2\hat{i}+\hat{j}+\hat{k}$$

Answer: B

Let

$$A(lpha) = egin{bmatrix} \coslpha & 0 & \sinlpha \ 0 & 1 & 0 \ \sinlpha & 0 & \coslpha \end{bmatrix} ext{ and } egin{bmatrix} x & y & z \end{bmatrix} = egin{bmatrix} 0 & 1 & 0 \ \sinlpha & 0 & \coslpha \end{bmatrix}$$

. If the system of equations has infinite solutions and sum of all the possible value of α in $[0, 2\pi]$ is $k\pi$, then the value of k is equal to

A. 0

B. 2

C. 4

D. 8

Answer: C

10. Two lines L_1 and L_2 of slops 1 are tangents to $y^2 = 4x$ and $x^2 + 2y6(2) = 4$ respectively, such that the distance d units between L_1 and L_2 is minimum, then the value of d is equal to

D.
$$\sqrt{3} + \sqrt{2}$$

Answer: A

11. A bag contains 21 markers with numbers 1 to 21. A maker is drawn at random and then replaced and then a second marker is drawn. The probability that the first number is odd and the second is even is

A.
$$\frac{10}{21}$$

B. $\frac{11}{21}$
C. $\frac{110}{441}$
D. $\frac{100}{441}$

Answer: C

12. In $\left(33+rac{1}{33}
ight)^n$ if the ratio of 7th term from the beginning to the 7th term from the end is 1/6, then find the value of n_{\cdot} A. 13 B. 16 C. 9

D. 23

Answer: C

13. The number of ways in which 10 boys can take positions around a circular round table, if two particular boys must not be seated side by side, is

A. 2 imes 48!

B. 12

C. 360

 $D.7 \times 8!$

Answer: D

14. If the equation $x^2 = ax + b = 0$ has distinct real roots and $x^2 + a|x| + b = 0$ has only one real root, then which of the following is true? b = 0, a > 0 b. b = 0, a < 0 c. b > 0, a < 0 d. $b\langle 0, a \rangle 0$

A.
$$b=0, a>0$$

B. b > 0, a < 0

C.
$$b>0, a>0$$

D. b > 0, a > 0

Answer: A

15. If
$$a = \underbrace{111....1}_{55 \text{ times}}$$

 $b = 1 + 10 + 10^2 + 10^3 + 10^4$ and
 $c = 1 + 10^5 + 10^{10} + \dots + 10^{50}$, then
A. $b, \frac{a}{2}, c$ are in arithmetic progression
B. b, \sqrt{a}, c are in geometric progression
C. a, b, c are in geometric progression
D. a, \sqrt{b}, c are in arithmetic progression

Answer: B

Watch Video Solution

16. The expression $\sin 27^{\circ} \cos 57^{\circ} \sin 87^{\circ}$ simplifies to

A.
$$\frac{\sin 9^{\circ}}{4}$$

B.
$$\frac{\cos 9^{\circ}}{4}$$

C.
$$\frac{\sin 9^{\circ}}{2}$$

D.
$$\frac{\cos 9^{\circ}}{2}$$

Answer: B

17. If
$$I=\int\!\!\frac{dx}{\sqrt[3]{x^{rac{5}{2}}(1+x)^{rac{7}{2}}}}=kf(x)+c$$
, where c is

the integration constant and $f(1)=rac{1}{2^{rac{1}{6}}}$, then the

value of f(2) is

A.
$$6\left(\frac{2}{3}\right)^{\frac{1}{6}}$$

B. $6\left(\frac{3}{2}\right)^{\frac{1}{6}}$
C. $\left(\frac{2}{3}\right)^{\frac{1}{6}}$
D. $\left(\frac{2}{3}\right)^{6}$

Answer: C

18. A plane P = 0 is the perependicular bisector of the line joining the points (2, 3, 4) and (6, 7, 8). The perpendicular distance of P = 0 from the origin is

A. $4\sqrt{3}$ units

- B. $5\sqrt{3}$ units
- C. $6\sqrt{3}$ units
- D. $8\sqrt{3}$ units

Answer: B

19. The focal chord of the parabola $y^2=32x$ touches

the ellipse $rac{x^2}{4^2}+rac{y^2}{2^2}=1$ in the first quadrant at the point

A.
$$\left(2, \sqrt{3}\right)$$

B. $\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$

C.
$$\left(\frac{4}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)$$

D. $\left(\frac{2}{\sqrt{2}}, \frac{4}{\sqrt{2}}\right)$

Answer: A

20. If m and M denotes the minimum and maximum value of |2z+1|, where $|z-2i|\leq 1$ and $i^2=-1$, then the value of $(M-n)^2$ is equal to

A. 17

B. 34

C. 51

D. 16

Answer: D

21. If
$$L=\lim_{x
ightarrow 0}\left(rac{e^{-rac{x^2}{2}}-\cos x}{x^2 an^2 x}
ight)$$
, then the value of

3L is equal to

Watch Video Solution

22. If $A_1, A_2, A_3.... A_{20}$ are 20 skew - symmetric matrices of same order and $B=\Sigma_{r=1}^{20}2r(A_r)^{(\,2r+1\,)}$,

then the sum of the principal diagonal elements of

matrix B is equal to

Watch Video Solution

23. If the locus of the image of the point $(\lambda^2, 2\lambda)$ in the line mirror x - y + 1 = 0 (where λ is a parameter) is

$$(x-a)^2=b(y-c)$$
 where $a,b,c\in I$, then the value of $\left(rac{a+b}{c+b}
ight)$ is equal to

24. The number of values of a for which the curves $4x^2 + a^2y^2 = 4a^2$ and $y^2 = 16x$ are orthogonal is Watch Video Solution

