

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 94

Mathematics

1. Consider the cubic $f(x)=x^3-3x+a$ where $a\in(0,2).$ Then, the equation f(x)=0 has

A. 3 real solutions

B. 2 real solutions

C. 1 real solutions

D. no real solutions

Answer: A

Watch Video Solution

2. The integral
$$I=\int\!\! rac{\sin^3 heta \cos heta}{\left(1+\sin^2 heta
ight)^2} d heta$$

simplifies to (where, c is the constant of

integration)

A.
$$rac{1}{2} ext{ln}(\sin heta)+rac{1}{1+\sin^2 heta}+c$$

B.
$$rac{1}{2}\mathrm{ln}ig(1+\sin^2 hetaig)+rac{1}{1+\sin^2 heta}+c$$

$$\mathsf{C.} \ln(\sin \theta) + \frac{1}{1 + \sin^2 \theta} + c$$

$$\mathsf{D.} \ln \bigl(\sin^2 \theta + 1 \bigr) + \frac{1}{\sin^2 \theta + 2} + c$$

Answer: B

3. For how many values of 'x' in the closed

interval $[\,-4,\,-1]$ is the matrix

$$egin{bmatrix} 3 & -1+x & 2 \ 3 & -1 & x+2 \ x+3 & -1 & 2 \end{bmatrix}$$
 singular ?

A. 1

B. 3

C. 4

D. 5

Answer: A

4. Consider the function $f(x)=\cos^{-1}([2^x])+\sin^{-1}([2^x]-1)$, then (where [.] represents the greatest integer part function)

A. the domain of f(x) is $x \in (-\infty, 0]$

B. the range of f(x) is singleton

C. f(x) is an even function

D. f(x) is an odd function

Answer: B

5. Consider three statements

p: person 'A' passed in mathematics exam

q: Person 'A' passed in physics exam

r: Person 'A' passed in chemistry exam,

Then the statement

$$-((-(p\Rightarrow q))\Rightarrow r)$$
 is equivalent to

A. Person A passed only in mathematics

among mathematics, physics and

chemistry.

- B. Person B failed only in physics among mathematics, physcis and chemistry.
- C. Person A passed in all the three subjects mathematics and physics and chemistry.
- D. Person A passed in chemistry but failed in mathematics and physics.

Answer: B

6. If f(x) is continuous in $\left[0,1\right]$ and

$$figg(rac{1}{3}igg)=12$$
, then the value of $\lim_{n o\infty}\,figg(rac{\sqrt{n}}{3\sqrt{n}+1}igg)$ is equal to

A. 2

B. 3

C. 12

D. None of these

Answer: C

7. For $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, the range of values of values

 $f(x) = 2 + \sin x + \sin^3 x + \sin^5 x \ldots \infty$

A.
$$(0, 1)$$

B.
$$(-\infty, \infty)$$

$$\mathsf{C.}\,(\,-2,2)$$

D. None of these

Answer: B

8. A biased coin is tossed 10 times. The head is 2 times more likely to appear than the tail. The probability that $2^{\rm nd}$ tail and $4^{\rm th}$ tail occur at $4^{\rm th}$ and $10^{\rm th}$ tosses respectively is

$$\mathsf{A.}\;\frac{16}{3^9}$$

B.
$$\frac{320}{3^{10}}$$

c.
$$\frac{320}{3^9}$$

D.
$$\frac{160}{3^{10}}$$

- **9.** If the line $\dfrac{x-4}{1}=\dfrac{y-2}{1}=\dfrac{z-m}{2}$ lies in the plane 2x+ly+z=7, then the value of m+2l is equal to
 - **A.** 1
 - B. 2
 - C. -1
 - D.-2

Watch Video Solution

10. The least positive integral value of k for

which
$$\begin{bmatrix} \cos. \frac{2\pi}{7} & -\sin. \frac{2\pi}{7} \\ \sin. \frac{2\pi}{7} & \cos. \frac{2\pi}{7} \end{bmatrix}^k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 is

A. 0

B. 3

C. 7

D. 14

Watch Video Solution

11. The solution of the differential equation

$$xdx+y\sin^2 xdy=ydy+x\sin^2 ydx$$
 is

$$A. x \tan x = \sec y + c$$

(where, c is an arbitrary constant)

 $B. x \tan y = \sec x + c$

C.

 $|x \tan x - \ln|\sec x| = y \tan y - \ln|\sec y| + c$

$$\mathsf{D}.\,x\tan x = \ln\lvert\sec y\rvert + c$$

Watch Video Solution

12. There are fifty persons among whom 2 are brothers. The number of ways they can be arranged in a circle, if there is exactly one person between the two brothers, is

A. $2 \times 48!$

B. 12

C. 360

D. $7 \times 8!$

Answer: A

Watch Video Solution

13. The product of the roots of the equation whose roots are greater by unity than the equation $x^3-5x^2+6x-3=0$ is equal to

- A. 3
- B. 12
- C. 15
- D. 18

Watch Video Solution

14. The focal chord of $y^2=64x$ is tangent to

 $\left(x-4
ight)^2+\left(y-2
ight)^2=4$, theen the square

root of the length of this focal chord is equal

to

- A. $\frac{74}{9}$
- B. $\frac{37}{3}$
- c. $\frac{74}{3}$
- D. $\frac{37}{9}$

Answer: C

15.

 $rac{(1+\cos 2x)}{\sin 2x}+3\Big(1+(\tan x) an.\ rac{x}{2}\Big)\sin x=4$

If

then the value of an x can be equal to

A. 2

B. $\frac{1}{2}$

C. 3

D. $\frac{1}{3}$

Answer: D

 $0 < \theta_1 < \theta_2 < \theta_3 < \dots$ 16. Let

denotes the positive solutions of the equation

$$3+3\cos\theta=2\sin^2\theta.$$
 If $\theta_3+\theta_7=a\pi$, where a is an integer, then the value of a is equal to

A. 6

B. 7

C. 8

D. 4

Answer: A

17. If the point $P\Big(\frac{3a}{2},1\Big)$ lies between the two different lines x+y=a and x+y=2a, then the least integral value of |a| is equal to

A. 1

B. 2

C. 3

D. 4

Answer: C

$$3+12+25+42+\,$$
 is 5145 b. 5148 c. 5142 d.

A. 5145

5195

B. 5148

C. 5142

D. 5195

Answer: B

19. A hyperbola having the transverse axis of length $\sqrt{2}$ units has the same focii as that of ellipse $3x^2+4y^2=12$, then its equation is

A.
$$2x^2 - 2y^2 = 1$$

$$\mathsf{B.}\,2x^2-2y^2=3$$

C.
$$x^2 - y^2 = -2$$

D.
$$x^2-y^2=2$$

20. An insect starts from the origin in the argand plane and goes 4 km $(N45^{\circ}E)$ then it moves 3 km $(N45^{\circ}W)$ and then takes an angular movement of $\frac{\pi}{3}$ about origin in the anticlockwise direction. The final position of the insect is

A.
$$(4-3i)e^{rac{-5\pi}{6}}$$

B.
$$(4+3i)e^{rac{-5\pi}{6}}$$

C.
$$(4-3i)e^{rac{i3\pi}{4}}$$

D.
$$(4+3i)e^{rac{-7\pi}{12}}$$

Answer: D

Watch Video Solution

21. If the area enclosed by $y^2=2x \ {
m and} \ x^2+4+4x=4y^2$ is k square units, then the value of 3k is equal to

22. If $\lim_{x\to 0} \left(1+px+qx^2\right)^{\csc\ x}=2048$, then the value of $\frac{p}{11}$ is equal to (take $\ln 2 = 0.69$

Watch Video Solution

23. Let $\overrightarrow{PR} = 3\hat{i} + \hat{j} - 2\hat{k} \text{ and } \overrightarrow{SQ} = \hat{i} - 3\hat{j} - 4\hat{k}$ represent the diagonals of the parallelogram PQRS. If $\overrightarrow{PT} = 2\hat{i} - \hat{j} + \hat{k}$ is another vector, then the volume (in cubic units) of the parallelepiped formed by the vectors

$$\overrightarrow{PT}, \overrightarrow{PQ} \text{ and } \overrightarrow{PS} \text{ is}$$

Watch Video Solution

24. The value of the expression

$$\Sigma_{k=0}^{27}k.^{27}\,C_kigg(rac{1}{3}igg)^kigg(rac{2}{3}igg)^{27-k}$$
 is equal to

Watch Video Solution

25. Let P and Q be 2 circles externally touhing each other at point X. Line segment AB is a direct common tangent to circle P and Q at points A and B respectively. Another common tangent to P and Q at X intersects line AB at a point Y. If BY = 10 units and the radius of P is 9 units, then the value of the reciprocal of the radius of the radius of the circle Q is equal to

