©'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 95

Mathematics

1.5 boys \& 4 girls sit in a straight line. Find the number of ways in which they can be seated if 2 girls aretogether \& the other 2 are also together but separate from the first 2. :
A. 5400
B. 10800
C. 21600
D. 43200

Answer: D

(D) Watch Video Solution

2. Let A and B are two non - singular matrices such that $A B=B A^{2}, B^{4}=I$ and $A^{k}=I$, then k can be equal to
A. 5
B. 10
C. 15
D. 16
3. If $g(x)$ is a differentiable function such that $\int_{1}^{\sin \alpha} x^{2} g(x) d x=(\sin \alpha-1), \forall \alpha \in\left(0, \frac{\pi}{2}\right)$, then the value of $g\left(\frac{1}{3}\right)$ is equal to
A. 4
B. $\frac{4}{3}$
C. $\frac{\sqrt{3}}{2}$
D. 9

Answer: D

4. Let $f(\theta)=\frac{1}{1+(\tan \theta)^{2021}}$, then the value of $\sum_{\theta=1^{\circ}}^{89^{\circ}} f(\theta)$ is equal to
A. 45
B. 44
C. $\frac{89}{2}$
D. $\frac{91}{2}$

Answer: C

- Watch Video Solution

5. If the circle $x^{2}+y^{2}=4 x+8 y+5$ intersects the line $3 x-4 y=m$ at two distinct points, then the number of possible integral values of m is equal to
A. 51
B. 50
C. 49
D. 48

Answer: C

- Watch Video Solution

6. Let 2 planes are being contained by the vectors $\alpha \hat{i}+3 \hat{j}-\hat{k}, \hat{i}+(\alpha-1) \hat{j}+2 \hat{k}$ and $3 \hat{i}+5 \hat{j}+2 \hat{k}$. If the angle between these 2 planes is θ, then the value of $\cos ^{2} \theta$ is equal to
A. $\frac{15}{17}$
B. $\frac{289}{717}$
C. $\frac{289}{2151}$
D. $\frac{17}{2151}$

Answer: C

(D) Watch Video Solution

7. If $(1,2, p),(2,8,-6)$ and $\left(\alpha^{2}-2 \alpha, p, 1\right)$ are ordered triplet pair of the form (x, y, z) which satisfy all the equations $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1, \frac{x}{b}+\frac{y}{c}+\frac{z}{a}=1$ and $\frac{x}{c}+\frac{y}{a}+\frac{z}{b}=1$, then the sum of all the values of α is equal to (where, $a b+b c+c a \neq 0)$
A. 3
B. 2
C. 0
D. -2

Answer: B

- Watch Video Solution

8. If α, β and γ are the roots of the equation $x^{3}-p x^{2}+q x-r=0$, then the value of $\frac{\alpha \beta}{\gamma}+\frac{\beta \gamma}{\alpha}+\frac{\gamma \alpha}{\beta}$ is equal to
A. $p q+3 r$
B. $p q+r$
C. $p q-3 r$
D. $\frac{q^{2}-2 p r}{r}$

(D) Watch Video Solution

9. Let p, q and r be three statements. Consider two compound statements

$$
\begin{aligned}
& S_{1}:(p \Rightarrow q) \Rightarrow r \equiv p \Rightarrow(p \Rightarrow r) \\
& S_{2}:(p \Leftrightarrow q) \Leftrightarrow r \equiv p \Leftrightarrow(q \Leftrightarrow r)
\end{aligned}
$$

State in order, whether S_{1}, S_{2} are true of false.
(where, T represents true F represents false)
A. TT
B. TF
C. FT
D. FF

Answer: A
10. Two poles standing on a horizontal ground are of height x meters and 40 meters respectively. The line joining their tops makes an angle of 30° with the ground and the distance between the foot of the poles is $30 \sqrt{3}$ meters, then the value of x can be
A. 20
B. 30
C. 10
D. 50

Answer: C

11. If the function $f: R \rightarrow A$ defined as $f(x)=\sin ^{-1}\left(\frac{x}{1+x^{2}}\right)$ is a surjective function, then the set A is
A. $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$
B. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
C. $\left[-\frac{\pi}{3}, \frac{\pi}{6}\right]$
D. $\left[0, \frac{\pi}{3}\right]$

Answer: A

- Watch Video Solution

12. If function $f(x)= \begin{cases}a \sqrt{x+7} & 0 \leq x<2 \\ b x+1 & x \geq 2\end{cases}$
differentiable $a \geq 0$, then the $2 a+4 b$ is equal to
A. 1
B. 5
C. 4
D. 9

Answer: A

(D) Watch Video Solution

13. The integral $I=\int \frac{2 \sin x}{(3+\sin 2 x)} d x$ simplifies to (where, C is the constant of integration)
A. $\ln \left|\frac{2+\sin x-\cos x}{2-\sin x+\cos x}\right|-\tan ^{-1}(\sin x+\cos x)+C$
B. $\ln (\sin x)+\sin 2 x+C$
C. $\sin (2 x)-\ln (\cos x)+C$
D.

$$
\frac{1}{4} \ln \left|\frac{2+\sin x-\cos x}{2-\sin x+\cos x}\right|-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right)+C
$$

Answer: D

- Watch Video Solution

14. The least positive term of an arithmetic progression whose first two term are $\frac{5}{2}$ and $\frac{23}{12}$ is
A. 6
B. 5
C. $\frac{1}{6}$
D. $\frac{37}{7}$

- Watch Video Solution

15. Let $f(x)=\min (x+1, \sqrt{1-x}) \forall x \leq 1$. Then, the area
(in sq. units(bounded by $y=f(x), y=0$ and $x=0$ from
$y=0$ to $x=1$ is equal to
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{4}{9}$
D. 1

Answer: B

16. The solution of the differential equation $y d x-x d y+\ln x d x=0$ is (where, C is an arbitrary constant)
A. $y=(\ln x)^{2}+C$
B. $y=(\ln x+1)+C$
C. $y=-(\ln x+1)+C$
D. $y=(\ln x)(x+C)$

Answer: D

- Watch Video Solution

17. The perpendicular bisector of the line segment joining $A(1$,
4) and $B(t, 3)$ has y-intercept equal to -4 . Then, the product of all possible values of t is equal to
A. 1
B. 2
C. -16
D. -4

Answer: C

(D) Watch Video Solution

18. Dice A has 4 red and 2 white faces whereas dice B has 3 red and 3 white faces. A coin is tossed once, if it falls head then the game continues by throwing the dice A and if it falls tail then the dice B is to be used. If red turns up at first 3 throws, then the probability that dice A is being used is
A. $\frac{7}{37}$
B. $\frac{64}{91}$
C. $\frac{9}{41}$
D. $\frac{27}{35}$

Answer: B

(D) Watch Video Solution

19. If the normals at two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of the parabola $y^{2}=4 x$ meets again on the parabola, where $x_{1}+x_{2}=8$ then $\left|y_{1}-y_{2}\right|$ is equal to
A. $\sqrt{2}$
B. 3
C. 4
D. 2

Answer: C

- Watch Video Solution

20. If the locus of the complex number z given by $\arg (z+i)-\arg (z-i)=\frac{2 \pi}{3}$ is an arc of a circle, then the length of the arc is
A. $\frac{4 \pi}{3}$
B. $\frac{4 \pi}{3 \sqrt{3}}$
C. $\frac{2 \sqrt{3}}{3}$
D. $\frac{2 \pi}{3 \sqrt{3}}$

D Watch Video Solution

21. The coefficient of the $(2 m+1)^{\text {th }}$ and $(4 m+5)^{\text {th }}$ terms in the expansion of $(1+x)^{100}$ are equal, then the value of $\frac{m}{2}$ is equal to

- Watch Video Solution

22. If the line $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}$ intersect the xy and
$y z$ plane at points A and B respectively. If the volume of the tetrahedron OABC is V cubic units (where, O is the origin) and point C is $(1,0,4)$, then the value of 102 V is equal to

- Watch Video Solution

23. The value of $\lim _{x \rightarrow 0} \frac{\sin ^{2} 3 x}{\sqrt{3+\sec x-2}}$ is equal to

- Watch Video Solution

24. If the acute formed between y-axis and the tangent drawn to the curve $y=x^{2}+4 x-17$ at the point $P\left(\frac{5}{2},-\frac{3}{4}\right)$ is θ, the value of $\cot \theta$ is equal to

- Watch Video Solution

25. Let C_{1} be the graph of $x y=1$ and the reflection of C_{1} in the line $y=2 x$ is C_{2}. If the equation of C_{2} is expressed as $12 x^{2}+b x y+c y^{2}+d=0$, then the value of $(b+c+d)$ is equal to
\square
