©゙’doubtnut

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 96

Mathematics

1. The sum of the series

$$
{ }^{20} C_{0}-.{ }^{20} C_{1}+.{ }^{20} C_{2}-.{ }^{20} C_{3}+\ldots-.+.{ }^{20} C_{10}
$$

is -
A. $-{ }^{20} C_{10}$
B. $\frac{1}{2} \cdot{ }^{20} C_{10}$
C. 0
D. ${ }^{20} C_{10}$

Answer: B

(Watch Video Solution

2. Let A be a non-singular symmetric matrix of
order 3. If $A^{T}=A^{2}-I$, then $(A-I)^{-1}$ is equal to
A. A
B. 2A
C. $A-I$
D. $2 A-I$

Answer: A

D Watch Video Solution

3. The value of $\lim _{x \rightarrow 2 \pi} \frac{1-(\sec x)^{\sec x}}{\ln (\sec x)}$ is equal to
A. 0
B. 1
C. 2
D. -1

Answer: D

D Watch Video Solution

4. Let the point at which the circle passing through $(0,0)$ and $(1,0)$ touches the circle $x^{2}+y^{2}=9$ is $\mathrm{P}(\mathrm{h}, \mathrm{k})$, then $|k|$ is equal to
A. $\sqrt{5}$
B. $2 \sqrt{2}$
C. $\sqrt{6}$
D. $\sqrt{7}$

Answer: B

D Watch Video Solution

5. If the vectors

$\left(x^{2}-1\right) \hat{i}+2\left(x^{2}-1\right) \hat{j}-3\left(x^{2}-1\right) \hat{k}$,
$\left(2 x^{2}-1\right) \hat{i}+\left(2 x^{2}+1\right) \hat{j}+x^{2} \hat{k}$
and
$\left(3 x^{2}+2\right) \hat{i}+\left(x^{2}+4\right) \hat{j}+\left(x^{2}+1\right) \hat{k}$ are non-
coplanar, then the number of real value x cannot take is
A. 1
B. 2
C. 4
D. 6

Answer: B
(D) Watch Video Solution
6. Let the equation of a line through $(3,6,-2)$
and parallel to the
planes
$x-y+2 z=5$ and $3 x+y+2 z=6$ is $L=0$.

If point $(\alpha, \beta, 2)$ satisfy $L=0$, then $\alpha+2 \beta$ is equal to
A. 10
B. 13
C. 15
D. 19
7. If one of the roots of the equation $\left|\begin{array}{ccc}7 & 6 & x^{2}-25 \\ 2 & x^{2}-25 & 2 \\ x^{2}-25 & 3 & 7\end{array}\right|=0 \quad$ is $\quad x=3$, then the sum of all other five roots is
A. 0
B. -3
C. -6
D. -8

8. If there are nine straight lines of which five are

 concurrent at a point and the other four are concurrent at another point and no two of these nine lines are parallel, then the number of points of intersection is equal toA. 20
B. 22
C. 36
D. 38

Answer: B

D Watch Video Solution

9. If α, β and γ are the roots of the equation
$x^{3}-p x^{2}+q x-r=0$, then the value of $\alpha^{2} \beta+\alpha^{2} \gamma+\beta^{2} \alpha+\beta^{2} \gamma+\gamma^{2} \alpha+\gamma^{2} \beta$ is equal to
A. $p q+3 r$
B. $p q+r$
C. $p q-3 r$
D. $\frac{q^{2}}{r}$

Answer: C

D Watch Video Solution

10. If $f(x)= \begin{cases}a+\tan ^{-1}(x-b) & x \geq 1 \\ \frac{x}{2} & x<1\end{cases}$ is differentiable at $\mathrm{x}=1$, then $4 a-b$ can be
A. 0
B. 1
C. -1
D. π

Answer: D

D Watch Video Solution

11. If the function $f: R \rightarrow A$ defined as $f(x)=\tan ^{-1}\left(\frac{2 x^{3}}{1+x^{6}}\right) \quad$ is \quad a surjective function, then the set A is equal to
A. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
B. $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
C. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
\text { D. }\left[0, \frac{\pi}{4}\right]
$$

Answer: B

D Watch Video Solution

12. A vertical tower subtends an angle of 60° at a point on the same level as the foot of the tower.

On moving 100 m further in line with the tower, it subtends an angle of 30° at the point. Then, the height of the tower, it subtends an angle of 30° at the point. Then, the height of the tower is
A. $20 \sqrt{3} m$
B. $30 \sqrt{3} m$
C. $50 \sqrt{3}$
D. $10 \sqrt{3} m$

Answer: C

D Watch Video Solution

13. The area bounded by the parabola $y=x^{2}+x+1$, its tangent at $\mathrm{P}(1,3)$, line
$x=-1$ and the x - axis is A sq units. Then, the value of 6 A is equal to
A. a prime number
B. a composite number
C. an irrational number
D. a non - integer

Answer: A

(D) Watch Video Solution
14. The solution of the differential equation
$x d x+y d y=\frac{x d y-y d x}{x^{2}+y^{2}}$
$\tan (f(x, y)-C)=\frac{y}{x}$ (where, C is an arbitrary constant). If $f(1,1)=1$, then $f(\pi, \pi)$ is equal to
A. 2
B. π^{2}
C. -1
D. π

Answer: B
15. The function $f(x)=x^{3}-6 x^{2}+a x+b$ satisfy the conditions of Rolle's theorem on [1,3] which of these are correct?
A. 1
B. 11
C. 22
D. 2

Answer: B
16. If the image of the point $M\left(\lambda, \lambda^{2}\right)$ on the
line $x+y=\lambda^{2}$ is $N(0,2)$, then the sum of the
square of all the possible values of λ is equal to
A. 5
B. 2
C. 1
D. 4

Answer: A
17. The first, second and seventh terms of an arithmetic progression (all the terms are distinct) are in geometric progression and the sum of these three terms is 93 . Then, the fourth term of this geometric progression is
A. 21
B. 31
C. 75
D. 375

Answer: D
18. The points $A(3,6)$ and B lie on the parabola $y^{2}=4 a x$, such that the chord AB subtends 90° at the origin, then the length of the chord $A B$ is equal to
A. $15 \sqrt{13}$ units
B. $12 \sqrt{17}$ units
C. $9 \sqrt{17}$ units
D. $9 \sqrt{10}$ units

Answer: A

D Watch Video Solution

19. Let $P(h, k)$ be a point on an argand plane equidistant from the roots of the equation $(z+1)^{4}=16 z^{4}$, then the value of h is equal to
A. 0
B. $\frac{2}{3}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Answer: C

D Watch Video Solution

20. If $x+y=3-\cos 4 \theta$ and $x-y=4 \sin 2 \theta$
,the value of $\sqrt{x}+\sqrt{y}$ is equal to
A. 2
B. 4
C. 6
D. 8

Answer: A

D Watch Video Solution

21. 2 Players A, B tosses a fair coin in cyclic order
$\mathrm{A}, \mathrm{A}, \mathrm{B}, \mathrm{A}, \mathrm{A}, \mathrm{B} . .$. . Till a head appears. If the probability that A gets head first is p , then $\frac{24}{p}$ is equal to
(D) Watch Video Solution
22. A number equal to 4 times of the mean and a frequency equal to k is inserted in the data of n observations. If the new mean is $\frac{7}{5}$ times the old mean, then $\frac{n}{k}$ is equal to

D Watch Video Solution

23.

If
the
integral
$I=\int \frac{\tan x}{5+7 \tan ^{2} x} d x=k \ln |f(x)|+C$ (where
C is the integration constant) and $f(0)=\frac{5}{7}$, then the value of $f\left(\frac{\pi}{4}\right)$ is equal to
24. If the value of definite integral
$A=\int_{0}^{10 \pi}[\sin x] d x$ is equal to $k \pi$, then the absolute value of k is equal to (where, [.] is the greatest integer function)

D Watch Video Solution

25. The area (in sq. units) of the triangle formed
by the latus rectum and the tangents at the end points of the latus rectum of $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ is equal to
