©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 97

Mathematics

1. If $e^{x}+e^{f(x)}=e$, then the domain of the
function f is
A. $(-\infty, 1]$
B. $(-\infty, 1)$
C. $(-1, \infty)$
D. $[1, \infty)$

Answer: B

- Watch Video Solution

2. $\begin{gathered}\text { The } \\ \text { value } \\ \lim _{n \rightarrow \infty}\left(\cos \cdot \frac{x}{2} \cos \cdot \frac{x}{4} \cos \cdot \frac{x}{8} \ldots \ldots \ldots \cos \cdot \frac{x}{2^{n+1}}\right)\end{gathered}$
is equal to
A. $\frac{x}{\sin x}$
B. $\frac{\sin x}{x}$
C. 0
D. None of these

Answer: B

D Watch Video Solution

3.

$$
f(x)= \begin{cases}(1+|\sin x|)^{\frac{1}{|\sin x|}}, & -\frac{\pi}{6}<x<0 \\ e^{\frac{\tan 2 x}{\tan 3 x}}, & 0<x<\frac{\pi}{6} \quad \text { at } \\ m, & x=0\end{cases}
$$

$x=0$. Then, the value of I and m are

$$
\begin{aligned}
& \text { A. } l=-\frac{2}{3}, m=e^{\frac{2}{3}} \\
& \text { B. } l=\frac{2}{3}, m=e^{-\frac{2}{3}} \\
& \text { C. } l=\frac{2}{3}, m=e^{\frac{2}{3}}
\end{aligned}
$$

D. None of these

Answer: C

4. In a series of $2 n$ observations, half of them are equal to a^{2} and the remaining half are equal to $-a^{2}$. If the standard deviation of the observation is 2 , then $|a|$ is equal to
A. $\frac{1}{n}$
B. $\sqrt{2}$
C. 2
D. $\frac{\sqrt{2}}{n}$

Answer: B

5. The number of non negative integral solution

 of the equation, $x+y+3 z=33$ isA. 120
B. 135
C. 210
D. 520

Answer: C
6. The least integral value of ' a ' for which the graphs $y=2 a x+1$ and $y=(a-6) x^{2}-2$ do not intersect:
A. -6
B. -5
C. 3
D. 2

Answer: B
7. If the sum of the first $2 n$ terms of the
A. P.2, $5,8, \ldots$, is equal to the sum of the first
n terms of the $A . P .57,59,61, \ldots$, then n equals
A. 10
B. 12
C. 11
D. 13

Answer: C
8. The solution set of $x \in(-\pi, \pi)$ for the inequality $\sin 2 x+1 \leq \cos x+2 \sin x$ is

$$
\begin{aligned}
& \text { A. } x \in\left[0, \frac{\pi}{6}\right] \\
& \text { B. } x \in\left[\frac{\pi}{6}, \frac{5 \pi}{6}\right] \cup\{0\} \\
& \text { C. } x \in\left[-\frac{\pi}{6}, \frac{5 \pi}{6}\right] \\
& \text { D. } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
\end{aligned}
$$

Answer: B
9. The integral $I=\int \sin (2 \theta)\left[\frac{1+\cos ^{2} \theta}{2 \sin ^{2} \theta}\right] d \theta$ simplifies to (where, c is the integration constant)
A. $\ln |\sin \theta|+\cos \theta+c$
B. $2 \ln |\sin \theta|-\frac{\sin ^{2} \theta}{2}+c$
C. $\ln |\sin \theta|-\sin ^{2} \theta+c$
D. $\ln |\cos \theta|+\cos ^{2} \theta+c$

Answer: B

10.
 If $\quad f(x)$
 satisfies

$f(x)+f(3-x)=3 \forall x \in R$, then the value
of integral $I=\int_{\frac{3}{4}}^{\frac{9}{4}} f(x) d x$ is equal to
A. 3
B. 6
C. $\frac{9}{4}$
D. $\frac{9}{2}$

Answer: C
11. The area (in sq. units) bounded by $y=x|x|$ and the line $y=x$ is equal to
A. 1
B. 2
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer: D

D Watch Video Solution
12. The equation of the curve for which the slope of the tangent at any point is given by
$(x+y+1)\left(\frac{d y}{d x}\right)=1$ is (where, c is an arbitrary constant)

$$
\text { A. } x y=e^{x}-c
$$

$$
\text { B. } x y=c e^{y}+2
$$

$$
\text { C. } x=c e^{y}-y-2
$$

$$
\text { D. } x=e^{y}+y-c
$$

Answer: C
13. Three boxes are labeled as A, B and C and each box contains 5 balls numbered 1, 2, 3, 4 and 5. The balls in each box are well mixed and one ball is chosen at random from each of the 3
boxes. If α, β and γ are the number on the ball from the boxes A, B and C respectively, then the probability that $\alpha=\beta+\gamma$ is equal to
A. $\frac{1}{25}$
B. $\frac{2}{25}$
C. $\frac{4}{25}$
D. $\frac{1}{5}$

Answer: B

D Watch Video Solution

14. An line parallel to $6 \hat{i}-3 \hat{j}+2 \hat{k}$ intersects the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{2}$ at A and the line $\frac{x+1}{1}=\frac{y+2}{2}=\frac{z+3}{2}$ at B , then the length of $A B$ is equal to
A. $\frac{3}{\sqrt{7}}$ units
B. $\frac{5}{\sqrt{439}}$ units
C. $\frac{7}{\sqrt{85}}$ units
D. $\frac{9}{\sqrt{425}}$ units

Answer: C

D Watch Video Solution

15. The value of $\left|\begin{array}{ccc}\cos . \frac{2 \pi}{63} & \cos \cdot \frac{3 \pi}{70} & \cos \cdot \frac{4 \pi}{77} \\ \cos . \frac{\pi}{72} & \cos \cdot \frac{\pi}{40} & \cos \cdot \frac{3 \pi}{88} \\ 1 & \cos \cdot \frac{\pi}{90} & \cos \cdot \frac{2 \pi}{99}\end{array}\right|$ is equal to
A. 0
B. 1
C. $2 \cos . \frac{\pi}{9}$
D. $\cos \frac{\pi}{11}$

Answer: A

D Watch Video Solution

16. If the system of equation
$14 x-3 y+z=12, x-2 y=0$ and $x+2 z=0$
has a solution $\left(x_{0}, y_{0}, z_{0}\right)$, then the value of $x_{0}^{2}+y_{2}^{2}+z_{2}^{2}$ is equal to

> A. $\frac{3}{2}$
> B. $\frac{3}{4}$
> C. $\frac{9}{2}$
> D. $\frac{9}{4}$

Answer: A

D Watch Video Solution

17. A triangle has two of its vertices at $(0,1)$ and $(2,2)$ in the cartesian plane. Its third vertex
lies on the x -axis. If the area of the triangle is 2
square units then the sum of the possible abscissae of the third vertex, is-
A. 40
B. 10
C. 52
D. 61

Answer: A

- Watch Video Solution

18. If a circle passes through the point $(1,1)$ and
cuts the circle $x^{2}+y^{2}=1$ orthogonally, then
the locus of its centre is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-3 x-3 y+1=0 \\
& \text { В. } 2 x+2 y-1=0 \\
& \text { С. } x^{2}+y^{2}-2 x-2 y+1=0 \\
& \text { D. } 2 x+2 y-3=0
\end{aligned}
$$

Answer: D

19. The length of intercept cut but the line $4 x+4 \sqrt{3} y-1=0 \quad$ on \quad the curve
$y^{2}=4\left(x+\frac{3}{4}\right)$ is equal to
A. 4 units
B. 9 units
C. 12 units
D. 16 units

Answer: D
20. If the eccentricity of the hyperbola $\frac{x^{2}}{(1+\sin \theta)^{2}}-\frac{y^{2}}{\cos ^{2} \theta}=1$ is $\frac{2}{\sqrt{3}}$, then the sum of all the possible values of θ is (where, $\theta \in(0, \pi))$
A. $\frac{5 \pi}{4}$
B. $\frac{2 \pi}{3}$
C. $\frac{7 \pi}{4}$
D. π

Answer: D
21. At the foot of a mountain the elevation of its summit is 45°, after ascending 1000 m towards
the mountain up a slope of 30° inclination, the elevation is found to be 60° Find the height of the mountain.

D Watch Video Solution

22. If the coefficient of x^{7} in $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ is
equal to the coefficient of x^{7} in $\left(a x-\frac{1}{b x^{2}}\right)^{11}$
then

D Watch Video Solution

23. The smallest natural value of a for which the
function
$f(x)=2(x+1)-a\left(2^{-x}\right)+(2 a+1)(\ln 2) x-6$
is increasing $\forall x \in R$, is

Watch Video Solution
24. Let $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{c} \vec{r}=0$, where

$$
\vec{a} \cdot \vec{c} \neq 0
$$

$\vec{a} \cdot \vec{c}(\vec{r} \times \vec{b})+(\vec{b} \cdot \vec{c})(\vec{a} \times \vec{r})$
equal to \qquad .

- Watch Video Solution

25. If z is a complex number such that $|z|=2$, then the area (in sq. units) of the triangle whose vertices are given by $z,-i z$ and $i z-z$ is equal to

