©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 11

Physics

1. The magnetic moment of a magnet is
3.6×10^{-3} A. m^{2}. Its pole strength is 120 mili
amp.M'. Its magnetic length is
A. 3 cm
B. 0.3 cm
C. 3.3 cm
D. 33 cm

Answer: A

D Watch Video Solution

2. An isolated soap bubble is kept in a container in which the pressure is maintained at P_{0}. The bubble is given some charge due to
which its radius increases to R_{0}. If the surface
tension of the soap bubble is T, then the charge given to the bubble is

$$
\begin{aligned}
& \text { A. } Q=8 \pi r \sqrt{r T \varepsilon_{0}} \\
& \text { B. } Q=8 \pi r \sqrt{2 r T \varepsilon_{0}} \\
& \text { C. } Q=4 \pi r \sqrt{2 r T \varepsilon_{0}} \\
& \text { D. } Q=4 \pi r \sqrt{r T \varepsilon_{0}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

3. A 200Ω resistance has a certain colour code as per standard colour coding. If one replaces
the red colour by green in the code, the new resistance will be
A. 500Ω
B. 400Ω
C. 300Ω
D. 100Ω

Answer: A

D Watch Video Solution
4. Four identical heat conductors are connected as shown in the figure. The temperature θ of the junction is [rods are insulated from the sides]

A. $30^{\circ} C$
B. $15^{\circ} \mathrm{C}$
C. $60^{\circ} C$
D. $70^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution
5. A block starts moving up a fixed inclined plane of inclination $60^{\circ} C$ with a velocityof $20 m s^{-1}$ and stops after 2 s . The approximate
value of the coefficient of friction is $\left[g=10 m s^{-2}\right]$
A. 3
B. 3.3
C. 0.27
D. 0.33

Answer: C

D Watch Video Solution
6. A smooth semicircular wire-track of radius R
is fixed in a vertical plane. One end of a massless spring of natural length $3 R / 4$ is attached to the lowest point O of the wire-
track. A small ring of mass m, which can slide
on the track, is attached to the other end of
the spring. The ring is held stationary at point
P such that the spring makes an angle of 60°
with the vertical. The spring constant
$K=m g / R$. Consider the instant when the
ring is released, and (i) draw the free body
diagram of the ring, (ii) determine the
tangential acceleration of the ring and the normal reaction.

A. $\frac{3 m g}{8}$
B. $m g$
C. $\frac{m g}{4}$
D. $\frac{3 m g}{4}$

Answer: A

D Watch Video Solution

7. One slit of a double slit experiment is covered by a thin glass plate of refractive index 1.4, and the other by a thin glass plate of the refractive index 1.7. The point on the screen where the central maximum fall before the glass plate was inserted, is now occupied
by what had been the fifth bright fringe was
seen before. Assume the plate have the same thickness t and wavelength of light 480 nm .

Then find the value of t in $\mu \mathrm{m}$.
A. $2.4 \mu m$
B. $4.8 \mu m$
C. $8 \mu m$
D. $16 \mu m$

Answer: C

8. A small satellite of mass m is revolving around earth in a circular orbit of radius r_{0} with speed v_{0}. At certain point of its orbit, the direction of motion of satellite is suddenly changed by angle $\theta=\cos ^{-1}(3 / 5)$ by turning its velocity vector, such that speed remains constant. The satellite consequently goes to elliptical orbit around earth. the ratio of speed at perigee to speed at apogee is
A. 3
B. 9
C. $1 / 3$
D. $1 / 9$

Answer: B

- Watch Video Solution

9. The minimum velocity v with which charge q
should be projected so that it manages to
reach the centre of the ring starting from the
position shown in figure is

A. $v=\sqrt{\frac{k Q q}{m R}(2-\sqrt{2})}$
B. $v=\sqrt{\frac{k Q q}{2 m R}(2-\sqrt{2})}$
C. $v=\sqrt{\frac{k Q q}{m R}}$
D. $v=\sqrt{\frac{k Q q}{\sqrt{2} m R}(1-\sqrt{2})}$

Answer: A

D Watch Video Solution

10. An $A C$ is given by the equation
$i=i_{1} \cos \omega t+i_{2} \sin \omega t$. The r.m.s. current is given by
A. $\frac{i_{1}+i_{2}}{\sqrt{2}}$
B. $\frac{\left|i_{1}+i_{2}\right|}{\sqrt{2}}$
C. $\sqrt{\frac{i_{1}^{2}+i_{2}^{2}}{2}}$
D. $\sqrt{\frac{i_{1}^{2}+i_{2}^{2}}{\sqrt{2}}}$

Answer: C

D Watch Video Solution

11. Two particles of masses m and $3 m$ approach each other with different velocities. After collision, the particle of mass m has velocity \vec{v} in their centre of mass frame. Velocity of particle of mass $3 m$ in the centre of mass frame is
A. $-2 \vec{v}$
B. $-\frac{\vec{v}}{2}$
C. $-\frac{\vec{v}}{3}$
D. $\frac{\vec{v}}{4}$

Answer: C

D Watch Video Solution

12. In the following common emitter configuration an $N P N$ transistor with current
gain $\beta=100$ is used. The output voltage of the amlifier will be

A. 10 mV
B. 0.1 V
C. 1.0 V
D. 10 V

Answer: C
13. After 280 days, the activity of a radioactive sample is 6000 dps . The activity reduces to 3000 dps after another 140 days. The initial activity of the sample in dps is
A. 6000
B. 9000
C. 3000
D. 24000

Answer: D

D Watch Video Solution

14. A conductor carrying current I is of the
type as shown in figure. Find the magnetic
field induction at the common centre O of all
the three arcs.

A. $\frac{5 \mu i \theta}{24 \pi R}$
B. $\frac{m_{0} i \theta}{24 \pi R}$
C. $\frac{11 \mu_{0} i \theta}{24 \pi R}$
D. zero

Answer: A

D Watch Video Solution

15. An electron of mass ' m ' is accelerated
through a potential difference of V and then
it enters a magnetic field of induction B.

Normal to the lines of force. Then the radius of the circular path is

$$
\text { A. } \sqrt{2 e V / m}
$$

B. $\sqrt{2 V m / e B^{2}}$
C. $\sqrt{2 V m / e B}$
D. $\sqrt{2 V m / e^{2} B}$

Answer: B

D Watch Video Solution

16. A pipe of length 1.5 m closed at one end is
filled with a gas and it resonates at $30^{\circ} C$ in
its fundamental with a tuning fork. Another
pipe of the same length but open at both
ends and filled with air and it resonates in its
fundamental with the same tuning fork.

Calculate the velocity of sound at $0^{\circ} \mathrm{C}$ in the gas, given that the velocity of sound in air is $360 \mathrm{~ms}^{-1}$ at 30°.
A. $580 \mathrm{~m} / \mathrm{s}$
B. $683 \mathrm{~m} / \mathrm{s}$
C. $880 \mathrm{~m} / \mathrm{s}$
D. $743 m / s$

Answer: B
17. If the unit of force is 100 N , unit of length is

10 m and unit of time is 100 s , what is the unit of mass in this system of units ?
A. $10^{5} \mathrm{~kg}$
B. $10^{6} \mathrm{~kg}$
C. $10^{2} \mathrm{~kg}$
D. $10^{3} \mathrm{~kg}$

Watch Video Solution

18. In a photoelectric effect experiment, stopping potential changes by 30 volt if we change frequency of the radiation. Then the magnitude of change in the frequency is :

$$
\left(h=6 \times 10^{-34} J-s\right)
$$

A. $4 \times 10^{-15} s^{-1}$
B. $8 \times 10^{15} s^{-1}$
C. $10^{16} s^{-1}$
D. $18 \times 10^{15} s^{-1}$

Answer: B

- Watch Video Solution

19.

A uniform rod of length L is free to rotate in a
vertical plane about a fixed horizontal axis
through B. The rod begins rotating from rest.

The angular velocity ω at angle θ is given as

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{6 g}{L}} \sin \theta \\
& \text { B. } \sqrt{\frac{6 g}{L}} \sin \frac{\theta}{2} \\
& \text { C. } \sqrt{\frac{6 g}{L}} \cos \frac{\theta}{2} \\
& \text { D. } \sqrt{\frac{6 g}{L}} \cos \theta
\end{aligned}
$$

Answer: B

- Watch Video Solution

20. The output Y of the combination of logic gates shown is equal to

A. A
B. \bar{A}
C. $A+B$
D. $A B$

- Watch Video Solution

21. A liquid having a coefficient of volume expansion γ is filled in a cylindrical vessel made out of glass having coefficient of lienar expansion $\alpha=\frac{\gamma}{5}$. At room temperature, the level of liquid in the vessel is l_{0} and when the temperature is increased by ΔT, the level of liquid in the vessel becomes $l \approx l_{0}=(1+n \alpha \Delta T)$. What is the value of n ? [Given, $\alpha \Delta T \ll 1$]

- Watch Video Solution

22. A point object is placed at a distance of 10 cm and its real image is formed at a distance of 20 cm from a concave mirror. If the object is moved by 0.1 cm towards the mirror. The image will shift by about

- Watch Video Solution

23. A cylindrical vessel of height 500 mm has an
orifice (small hole) at its bottom. The orifice is
initially closed and water is filled in it up to
height H. Now the top is completely sealed with a cap and the orifice at the bottom is opened. Some water comes out from the orifice and the water level in the vessel becomes steady with height of water column being 200 mm . Find the fall in height(in mm) of water level due to opening of the orifice.
[Take atmospheric
pressure
$=1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}, \quad$ density \quad of water=
$1000 \mathrm{~kg} / \mathrm{m}^{3}$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$. Neglect any effect of surface tension.]
24. Two circular rings of identical radii and resistance 36Ω are placed as shown the figure.

Conducting joints are made at points A and B and a cell of emf 20 V is connected between
these two points.What is the power (in W) delivered by the cell ? $\left[C_{1}\right.$ and C_{2} are the

centres of the two rings]

- Watch Video Solution

25. A wooden cylinder of mass 20 g and area of cross-section $1 \mathrm{~cm}^{2}$, having a piece of lead of mass 60 g attached to its bottom, floats in water. The cylinder is depressed and then
released. The frequency of oscillation is $\frac{N}{\pi} S^{-1}$. Find the value of N . [Neglect the volume of water displaced by the lead piece,
take $\quad g=9.8 m / s^{2}$,density of water $\left.\rho_{w}=1 \mathrm{gcm}^{-3}\right]$

D Watch Video Solution

