©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 13

Physics

1. A beam of ultraviolet radius hacking
wavelength between 100 nm and 200 nm is
inclined on a sample of atomic hydrogen gas.

Assuming that the atoms are in ground state which wavelength will have low intensity in the transmitted beam? If the energy of a photon is equal to the ground state it has large probability of being observed by an atom in the ground state
A. 104 nm
B. 103 nm
C. 105 nm
D. 100 nm

- Watch Video Solution

2. A particle of mass m is dropped from a height h above the ground. Simultaneously another particle of the same mass is thrown vertically upwards from the ground with a speed of $\sqrt{2 g h}$. If they collide head-on completely inelastically, then the time taken for the combined mass to reach the ground is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{3 h}{4 g}} \\
& \text { B. } \sqrt{\frac{3 h}{2 g}}
\end{aligned}
$$

C. $\sqrt{\frac{h}{2 g}}$
D. $\sqrt{\frac{h}{4 g}}$

Answer: B

- Watch Video Solution

3. Two identical short bar magnets, each
having magnetic moment M, are placed a distance of $2 d$ apart with axes perpendicular to each other in a horizontal plane. The
magnetic induction at a point midway
between them is

> A. $\frac{\sqrt{2} \mu_{0} M}{4 \pi d^{3}}$
> B. $\frac{\sqrt{3} \mu_{0} M}{4 \pi d^{3}}$
> C. $\frac{\mu_{0} M}{2 \pi d^{3}}$
> D. $\frac{\sqrt{5} \mu_{0} M}{4 \pi d^{3}}$

Answer: D

D Watch Video Solution

4. In the given circuit diagram, a connecting wire of negligible resistance is joining the points B and D, the current in the connecting wire is

A. zero
B. 2A

C. 0.4 A

D. 4 A

Answer: B

D Watch Video Solution

5. Two batteries of emf E_{1} and $E_{2}\left(E_{2}>E_{1}\right)$
and internal resistance r_{1} and r_{2} respectively
are connected in parallel as shown in the
figure. Then, which of the followings
statements is correct ?

A. The equivalent emf E is smaller than E_{1}
B. The equivalent emf $E=E_{1}+E_{2}$
C. The equivalent emf E is greater than E_{2}
D. The equivalent emf E of two cells is between E_{1} and E_{2} always.

Answer: D

D Watch Video Solution

6. The figure below shows a battery of emf ε connected to an inductor L and resistance R in
series. If the switch is closed at $\mathrm{t}=0$, then the total charge that flows from the battery in
time constant of the circuit is

A. $\frac{\varepsilon L}{R^{2}}\left(1-\frac{1}{e}\right)$
B. $\frac{\varepsilon L}{2 e R^{2}}$
C. $\frac{\varepsilon L}{4 e R^{2}}$
D. $\frac{\varepsilon L}{e R^{2}}$
7. An uncharged sphere of metal is placed in between two charged plates as shown. The lines of force look like

Answer: C

D Watch Video Solution

8. A small charged ball is hovering in the state of equilibrium at a height h over a very large horizontal uniformly charged sheet. If a disc of radius $r(r \ll h)$, is removed from the plate directly underneath the ball, then the acceleration of the ball will be
A. $\frac{g}{2}\left(\frac{r}{h}\right)^{2}$
B. $\frac{g}{2}\left(\frac{h}{r}\right)^{2}$
C. $\frac{g}{4}\left(\frac{r}{h}\right)^{2}$
D. $\frac{g}{4}\left(\frac{h}{r}\right)^{2}$

Answer: A

D Watch Video Solution

9. A planet of small mass m moves around the sun of mass M along an elliptrical orbit such
that its minimum and maximum distance from
sun are r and R respectively. Its period of revolution will be:

$$
\begin{aligned}
& \text { А. } T=\pi \sqrt{\frac{(r+R)^{3}}{2 G M_{s}}} \\
& \text { В. } T=\pi \sqrt{\frac{(r+R)^{3}}{3 G M_{s}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } T=\pi \sqrt{\frac{(r+R)^{3}}{G M_{s}}} \\
& \text { D. } T=\pi \sqrt{\frac{2(r+R)^{3}}{G M_{s}}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

10. A body takes 5 minutes for cooling from
$50^{\circ} C$ to $40^{\circ} C$ Its temperature comes down to $33.33^{\circ} \mathrm{C}$ in next 5 minutes. Temperature of surroundings is
A. $15^{\circ} \mathrm{C}$
B. $20^{\circ} \mathrm{C}$
C. $25^{\circ} C$
D. $10^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution

11. Pressure P, Volume V and temperature T of a certain material are related by the
$P=\frac{\alpha T^{2}}{V}$. Here α is constant. Work done by
the material when temparature changes from
T_{0} to $2 T_{0}$ while pressure remains constant is :
A. $3 \alpha T_{0}^{2}$
B. $5 \alpha T_{0}^{2}$
C. $\frac{2}{3} \alpha T_{0}^{2}$
D. $7 \alpha T_{0}^{2}$

Answer: A

12. A loop PQR carries a current $i=2 A$ as
shown in the figure. A uniform magnetic field B
$=2 \mathrm{~T}$ exists in space parallel to the plane of the loop. The magnetic torque on the loop is

A. 16 Nm
B. 8 Nm
C. zero
D. 4 Nm

Answer: B

- Watch Video Solution

13. An object of mass 10 kg is connected to the
lower end of a massless string of length 4 m
hanging from the ceiling. If a force F is applied horizontally at the mid-point of the string, the
top half of the string makes an angle of 45° with the vertical , then the magnitude of F is
A. 75 N
B. 90 N
C. 100 N
D. 70 N

Answer: C
(Watch Video Solution
14. Friction is absent everywhere and the threads, spring and pulleys are massless. If $m_{A}=m_{B}=M$, then the angular frequency of the system for small oscillations will be

A. $\sqrt{\frac{2 k}{4 m}}$
B. $\sqrt{\frac{4 k}{5 m}}$

C. $\sqrt{\frac{6 k}{7 m}}$
 D. $\sqrt{\frac{8 k}{5 m}}$

Answer: B

D Watch Video Solution

15. The work done by the force $\vec{F}=6 \hat{i}+2 \hat{j}$

N in displacing an object from $\overrightarrow{r_{1}}=3 \hat{i}+8 \hat{j}$ to
$\overrightarrow{r_{2}}=5 \hat{i}-4 \hat{j} \mathrm{~m}$, is
A. 12 J

B. $-36 J$

C. 36J

$$
\text { D. }-12 J
$$

Answer: D

D Watch Video Solution

16. Two bodies are in equilibrium when suspended in water from the arms of balance.

The mass of one body is 36 g and its density is
$9 \mathrm{~g} / \mathrm{cm}^{3}$ If the mass of the other is 46 g , its
density in $\mathrm{g} / \mathrm{cm}^{3}$ is
A. $\frac{4}{3}$
B. $\frac{3}{2}$
C. 3
D. 5

Answer: C
(Watch Video Solution
17. A sound wave of frequency f propagating
through air with a velocity C, is reflected from
a surface which is moving away from the source with a constant speed V. Find the frequency of the reflected wave, measured by the observer at the position of the source.

$$
\begin{aligned}
& \text { A. } \frac{f(c+2 v)}{c+v} \\
& \text { B. } \frac{f(c+v)}{c-v} \\
& \text { C. } \frac{f(c-v)}{c+v} \\
& \text { D. } \frac{f(c-v)}{c-2 v}
\end{aligned}
$$

Answer: C

D Watch Video Solution

18. In CGS system of units, the density of a material is $4 \mathrm{gcm}^{-3}$. What will be the value of the density of the material in a system of units in which unit of length is 10 cm and unit of mass is 100 g ?
A. 0.04
B. 0.4
C. 40
D. 400

Answer: C

- Watch Video Solution

19. The current in the branch of a circuit
shown below is
$-4 \mathrm{~V} \quad-1 \mathrm{~V}$
A. OA
B. $10^{-2} A$
C. $1 A$
D. 0.10 A

Answer: A

D Watch Video Solution

20. In the circuit shown in figure,the base current I_{B} is $10 \mu A$ and the collector current is
5.2 mA . The voltage $\left(V_{B E}\right)$ across the base
and emitter is

A. 0.1 V
B. 0.5 V
C. 0.25 V
D. 0.7 V

Answer: B

D Watch Video Solution
21. A motor generates an output power of 220

W at an angular velocity of 2100 rpm. Calculate
the torque (in Nm) produced by the motor ? [
Take $\pi=\frac{22}{7}$]

D Watch Video Solution

22. A point source S is placed at the bottom of
a 12 mm high transparent block of diamond (refractive index $=2.4$). The block is immersed
in an optically rarer liquid as shown in the
figure. It is found that the light emerging from
the block to the liquid forms a circular bright spot of diameter 18 mm on the top of the block. What is the refractive index of the liquid ?

D Watch Video Solution

23. The ratio of amplitudes of two coherent waves in Young's double-slit experiemnt is $\frac{A_{1}}{A_{2}}=\frac{1}{3}$. What is the ratio of maximum and minimum intensities of fringes ?

- Watch Video Solution

24. A pendulum clock (fitted with a small
heavy bob that is connected with a metal rod)
is 3 seconds fast each day at a temperature of
$15^{\circ} \mathrm{C}$ and 2 seconds slow at a temperature of
$30^{\circ} \mathrm{C}$. Find the temperature (in ${ }^{\circ} \mathrm{C}$) at which will show the correct time.

D Watch Video Solution

25. A metal surface having a work function
$\phi=2.2 \times 10^{-19} \mathrm{~J}$, is illuminated by the light
of wavelengh $1320 \AA$. What is the maximum kinetic energy (in eV) of the emitted photoelectron ? [Take $h=6.6 \times 10^{-34} \mathrm{Js}$]
