©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 21

Physics

1. The B-H curve for a ferromagnet is shown in
the figure. The ferromagnet is placed inside a
long solenoid with 1000 turns/cm. The current
that should be passed in the solenoid to demagnetise the ferromagnet completely is :

A. 2 mA
B. $20 \mu A$
C. $1 m A$
D. $40 \mu \mathrm{~A}$

Answer: C

D Watch Video Solution

2. A cell of emf E and internal resistance r supplies currents for the same time t through external resistances
$R_{1}=100 \Omega$ and $R_{2}=40 \Omega$ separately. If the heat developed in both cases is the same, then the internal resistance of the cell is

A. 28.6Ω

B. 80Ω
C. 63.3Ω
D. 140Ω

Answer: C

D Watch Video Solution

3. Two point white dots are 1 mm apart on a black paper. They are viewed by eye of pupil diameter 3mm. Approximately, what is the maximum distance at which these dots can be
resolved by the eye? [Take wavelelngth of light

$=500 \mathrm{~nm}$]

A. 6 m
B. 3 m
C. 1 m
D. 5 m

Answer: D
(Watch Video Solution
4. In the given circuit the R.M.S values of voltages across the capacitor C, inductor L and resistor R_{1} are $12 \mathrm{~V}, 10 \mathrm{~V}$ and 5 V respectively.

Then the peak voltage across R_{2} is

A. $7 \sqrt{2} V$
B. $\sqrt{69} V$
C. $\sqrt{138} V$
D. none of these

Answer: C

- Watch Video Solution

5. If each capacitor has capacitance C, then equivalent capacitance between A and B is

A. $\frac{4 C}{3}$
B. $\frac{8 C}{3}$
C. $12 C$
D. $\frac{5 C}{12}$

Answer: B

- Watch Video Solution

6. A $10 \mu F$ capacitor is charged to a potential difference of 50 V and is connected to another uncharged capacitor in parallel. Now the common potential difference becomes 20 volt.

The capacitance of second capacitor is
A. $15 \mu F$
B. $30 \mu F$
C. $20 \mu F$

D. $10 \mu F$

Answer: A

D Watch Video Solution

7. A particle of mass $2 \times 10^{-5} \mathrm{~kg}$ moves horizontally between two horizontal plates of a charged parallel plate capacitor between which there is an electric field of $200 N C^{-1}$ acting upward. A magnetic induction of 2.0 T is applied at right angles to the electric field in a
direction normal to both \vec{B} and \vec{v}. If g is
$9.8 m s^{-2}$ and the charge on the particle is
$10^{-6} C$, then find the velocity of charge particle so that it continues to move horizontally
A. $2 m s^{-1}$
B. $20 m s^{-1}$
C. $0.2 m s^{-1}$
D. $100 m s^{-1}$

Answer: A
8. Two identical vessels contain two different ideal gases at the same temperature. If the average speed of gas molecules in the first vessel is euqal to the most probable speed of molecules in the second vessel, then the ratio of the mass of gas molecules in the first vessel to that in the second vessel is

$$
\begin{aligned}
& \text { A. } \frac{4}{\pi} \\
& \text { B. } \frac{8}{\pi}
\end{aligned}
$$

C. $\frac{2}{\pi}$
D. $\frac{\pi}{2}$

Answer: A

- Watch Video Solution

9. The K_{α} line obtained for molybdenum
$(Z=42)$ is $0.71 \AA$. Then, the wavelength of
the K_{α} line of copper $(Z=29)$ is
A. $2.14 \AA$
B. $1.52 \AA$
C. $1.04 \AA$
D. $1.71 \AA$

Answer: B

D Watch Video Solution

10. Wire having tension 225 N produces six beats per second when it is tuned with a fork.

When tension changes to 256 N , it is tuned with the same fork, the number of beats
remain unchanged. The frequency of the fork will be
A. 186 Hz
B. 225 Hz
C. 256 Hz
D. 280 Hz

Answer: A
(Watch Video Solution
11. The arrangement is released from rest. The minimum angle θ at which block A starts sliding downwards is

A. $\tan \theta=0$
B. $\tan \theta=0.5$
C. $\tan \theta=\frac{1}{6}$
D. $\tan \theta=\frac{1}{3}$

Answer: C

D Watch Video Solution

12. The length and breadth of a metal sheet are 3.124 m and 3.002 m respectively. The area of this sheet upto correct significant figure is
A. $9.378 m^{2}$
B. $9.37 m^{2}$
C. $9.378248 m^{2}$
D. $9.3782 m^{2}$

Answer: A

D Watch Video Solution

13. A bead of mass m can slide without friction on a fixed circular horizontal ring of radius $3 R$
having a centre at the point C. The bead is attached to one of the ends of spring of
spring constant k. Natural length of spring is R and the other end of the spring is R and the other end of the spring is fixed at point O as shown in the figure. If the bead is released from position A, then the kinetic energy of the bead when it reaches point B is

$$
\text { A. } \frac{25}{2} k R^{2}
$$

B. $\frac{9}{2} k R^{2}$
C. $8 k R^{2}$
D. $12 K R^{2}$

Answer: C

D Watch Video Solution

14. There is a thin uniform disc of radius R and mass per unit area σ in which a hole of radius
$R / 2$ has been cut out as shown in the figure.
Inside the hole, a square plate of same mass
per unit area σ is inserted so that its corners touch the periphery of the hole. The distance of the centre of mass of the system from the origin is

B. $\frac{R(1-\pi)}{2(2 \pi+1)}$
C. $\frac{2 R \pi}{2(3 \pi+2)}$
D. $\frac{3 R \pi}{2(2 \pi+1)}$

Answer: A

D Watch Video Solution

15. A cylinder of mass M and radius R lies on a plank of mass M as shown. The surface between plank and ground is smooth, and between cylinder and plank is rough.

Assuming no slipping between cylinder and
plank, the time period of oscillation (When displaced from equilibrium) of the system is

A. $2 \pi \sqrt{\frac{m}{3 k}}$
B. $4 \pi \sqrt{\frac{2 m}{3 k}}$
C. $4 \pi \sqrt{\frac{M}{3 k}}$
D. $4 \pi \sqrt{\frac{3 M}{2 k}}$

Answer: C

D Watch Video Solution

16. Two wires of the same material (Young's modulus $=Y$) and same length L but radii R and
$2 R$ respectively are joined end to end and a weight w is suspended from the combination as shown in the figure. The elastic potential
energy in the system is

A. $\frac{3 w^{2} L}{4 \pi R^{2} Y}$
B. $\frac{3 w^{2} L}{8 \pi R^{2} Y}$
C. $\frac{5 w^{2} L}{8 \pi R^{2} Y}$
D. $\frac{w^{2} L}{\pi R^{2} Y}$

Answer: C

D Watch Video Solution

17. A layer of oil with density $724 \mathrm{~kg} \mathrm{~m}{ }^{-3}$ floats on water of density $1000 \mathrm{kgm}^{-3}$. A block floats on the oil-water interface with $1 / 6$ of its volume in oil and $5 / 6$ of its volume in water, as shown in the figure. What is the density of

A. $1024 \mathrm{kgm}^{-3}$
B. $1276 \mathrm{kgm}^{-3}$
C. $776 \mathrm{kgm}^{-3}$
D. $954 \mathrm{kgm}^{-3}$

Answer: D

Watch Video Solution

18. A uniform ball of radius r rolls without
slipping down from the top of a sphere of radius R Find the angular velocity of the ball at the moment it breaks off the sphere. The initial velocity of the ball is negligible.

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{10 g(R+r)}{17 r^{2}}} \\
& \text { B. } \sqrt{\frac{10 g(R-r)}{17 r^{2}}} \\
& \text { C. } \sqrt{\frac{10 g(R+r)}{17}}
\end{aligned}
$$

D. $\sqrt{\frac{10(R+r)}{17}}$

Answer: A

D Watch Video Solution

19. A vessel contains two non-reactive gases neon (monoatomic) and oxygen (diatomic).

The ratio of their partial pressures is 3:2.

Estimate the ratio of
(i) number of molecules, and
(ii) mass density of neon and oxygen in the
vessel.

Atomic mass of neon $=20.2 \mathrm{u}$, and molecular mass of oxygen $=32.0 \mathrm{u}$.

> A. $\frac{3}{2}$
> B. $\frac{2}{3}$
> C. $\frac{1}{3}$
> D. $\frac{1}{2}$

Answer: A

D Watch Video Solution
20. In a transistor, the collector current varies

by 0.49 mA and emitter current varies by 0.50

mA . Then current gain β is
A. 49
B. 150
C. 99
D. 100

Answer: A
(Watch Video Solution
21. If in nuclear fission, a piece of uranium of mass 6.0 g is lost, the energy obtained (in kWh) is $n \times 10^{7}$. Find the value of n .

- Watch Video Solution

22. In the given circuit, what is the current (in
A) through the battery?

(D) Watch Video Solution
23. A galvanometer coil has a resistance 90Ω
and full scale deflection current 10 mA . A 910Ω
resistance is connected in series with the galvanometer to make a voltmeter. If the least count of the voltmeter is 0.1 V the number of divisions on its scale is

D Watch Video Solution

24. At what distance from a convex mirror of
focal length 2.5 m should a body stand so that
his image has a height equal to half the original height ? The principal axis is perpendicular to the height.

D Watch Video Solution

25. The resistance of each straight section $r=2 \Omega$. Find the equivalent resistance (in
ohms) between A and B.

(D) Watch Video Solution
