©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 23

Physics

1. A proton is bombarded on a stationary
lithium nucleus. As a result of the collision,
two α-particles are produced. If the direction
of motion of the α-particles with the initial direction of motion makes an angles $\cos ^{-1}(1 / 4)$, find the kinetic energy of the striking proton. Given, binding energies per nucleon of $L i^{7}$ and $H e^{4}$ are 5.60 and
7.06 MeV , respectively.
(Assume mass of proton \approx mass of neutron).
A. 17.28 MeV
B. 17.36 MeV
C. 17.58 MeV
D. 17.44 MeV

Answer: A

D Watch Video Solution

2. At a certain place, the angle of dip is 30° and the horizontal component of earth's magnetic field is $50 \mu T$. The total magnetic field (in μT) of the earth at this place, is
A. $100 \sqrt{3} \mu T$
B. $100 \mu T$
C. $\frac{100}{\sqrt{3}} \mu T$

D. $200 \mu T$

Answer: C

D Watch Video Solution

3. A battery of 10 V is connected to a resistance of 20Ω through a variable resistance R . If the variable resistance R is increased at the rate of $5 \Omega \min ^{-1}$, then the amount of charge that passes through the battery in 4 min is
A. $120 C$
B. $120 \log _{e}(2) C$
C. $\frac{120}{\log _{e}(2)} C$
D. $\frac{60}{\log _{e}(2)} C$

Answer: B

D Watch Video Solution

4. In the circuit shown below, the voltmeter is of large resistance. The E.M.F. of the cell is ε.

The reading of the voltmeter is

A. zero
B. $\frac{\varepsilon}{10}$
C. $\frac{\varepsilon}{5}$
D. $\frac{\varepsilon}{2}$

- Watch Video Solution

5. An AC circuit drawing power from a source of angular frequency $50 \mathrm{rad} \mathrm{s}^{-1}$ has a power factor of 0.6. In this condition, a resistance of 100Ω is present and the current is lagging behind the voltage. If a capacitor is connected in series, then the required capacitance that will result in a power factor of unity is
A. $30 \mu F$
B. $150 \mu F$

C. $50 \mu F$

D. $200 \mu F$

Answer: B

D Watch Video Solution

6. Consider a solid cube made up of insulating material having a uniform volume charge density. Assuming the electrostatic potential to be zero at infinity, the ratio of the potential
at a corner of the cube to that at the centre will be
A. $1: 1$
B. $1: 2$
C. 1: 4
D. $1: 8$

Answer: B
(Watch Video Solution

7. Figures shows an electric line of force which

curves along a circular arc.The magnitude of electric field intensities is same at all points on this curve and is equal to E.If the potential at
A is V,the potential at B is

A. $V-E R \theta$
B. $V-2 E R \sin . \frac{\theta}{2}$
C. $V+E R \theta$
D. $V+2 E R \sin . \frac{\theta}{2}$

Answer: A

D Watch Video Solution

8. The main scale of a vernier callipers reads

10 mm in 10 divisions. Ten divisions of vernier scale coincide with nine divisions of the main scale. When the two jaws of the callipers touch
each other, the fifth division of the vernier coincides with 9 main scale divisions and zero of the vernier is to the right of zero of main scale, when a cylinder is tightly placed between the two jaws, the zero of the vernier scale lies slightly to the left of 3.2 cm and the fourth vernier division coincides with a main scale division. Find diameter of the cylinder.
A. 3.19 cm
B. 3.14 cm
C. 3.04 cm

D. None of these

Answer: A

D Watch Video Solution

9. An equilateral triangular loop $A D C$ having some resistance is pulled with a constant velocity v out of a uniform magnetic field directed inot the paper. At time $t=0$, side
$D C$ of the loop at is at edge of the magnetic field.

The induced current (i) versus time (t) graph will be as
A.

B.

C.

Answer: B

D Watch Video Solution

10. The kinetic energy of a particle executing

SHM is 16 J . When it is in its mean position. If
the amplitude of oscillation is 25 cm and the mass of the particle is 5.12 kg , the time period of its oscillation in second is
A. $20 \pi s$
B. $2 \pi s$
C. $\pi / 5 s$
D. $5 \pi s$

Answer: C

D Watch Video Solution
11. The energy that should be added to an electron to reduce its de-Broglie wavelength from 1 nm to 0.5 nm is
A. four times the initial energy
B. equal to the initial energy
C. twice the initial energy
D. thrice the initial energy

Answer: D

D Watch Video Solution

12. A U - tube having a horizontal arm of length 20 cm , has a uniform cross - sectional area $1 \mathrm{~cm}^{2}$. It is filled with water of volume 60
cc . The volume of a liquid of density $4 \mathrm{~g} \mathrm{cc}^{-1}$
required to be poured in one arm of the U tube so that no water is left in the horizontal arm of the tube is (take $\mathrm{g} \quad=9.8 m s^{-2}$)
A. 60 cc
B. 45 cc
C. 50 cc
D. 35 cc

Answer: D

13. In standard Young's double - slit experiment, visible light $\lambda \in(350 \mathrm{~nm}, 750 \mathrm{~nm})$
is used in both the slits. Distance between the
slits is 2 mm , and the distance of the screen
from the slits is 1 m . A thin glass slab
($\mu=1.5$) of thickness $6 \mu m$ is placed in front
of slit S_{2}. Which among the following
wavelength is missing at point P, which is
directly in front of slit S_{2} ? (Neglect dispersion

A. 400 nm
B. 500 nm
C. 600 nm
D. 700 nm

Answer: A

D Watch Video Solution

14.
solid sphere of radius r is gently placed on a rough horizontal ground with an initial angular speed ω_{0} and no linear velocity. If the coefficient of friction is μ, find the time t when
the slipping stops. in addition state the linear
velocity v and angular velocity ω at the end of

slipping

> A. $\frac{2}{7} \frac{r \omega_{0}}{\mu g}$ B. $\frac{3}{7} \frac{r \omega A_{0}}{\mu g}$ C. $\frac{3}{7} \frac{r \omega_{0}}{\mu g}$ D. $\frac{r \omega_{0}}{\mu g}$

Answer: A
(Watch Video Solution
15. A piece of copper and another of germanium are cooled from room temperature to 77 K , the resistance of -
A. each of them increases
B. each of them decreases
C. copper decreases and of germanium increases
D. copper increases and of germanium
decreases

Answer: C

D Watch Video Solution

16. Which among the following statements is
correct regarding the dependence of voltage
gain of an amplifier on the frequency of the signal?
A. does not depend upon frequency of the
signal
B. increases with frequency of the signal
C. decreases with frequency of the signal D. initially constant and then decreases with frequency of the signal

Answer: D

D Watch Video Solution

17. If P, Q and R are physical quantities, having different dimensions, which of the following combination can never be a meaningful quantity?

> A. $\frac{P Q-Q^{2}}{R}$
> B. $(P Q-R)$
> C. $\frac{P Q}{R}$
> D. $\left(\frac{P R-Q^{2}}{R}\right)$

Answer: A

- Watch Video Solution

18. Assuming that the human pupil has a radius of 0.25 cm and a comfortable viewing distance of 25 cm . The minimum separation
between two point object that the human eye
can resolve for the light of wavelength 500 nm
is
A. $300 \mu m$
B. $1 \mu m$
C. $30 \mu m$
D. $100 \mu \mathrm{~m}$

Answer: C

D Watch Video Solution
19. The spring block system lies on a smooth
horizontal surface. The free end of the spring
is being pulled towards right with constant speed $v_{0}=2 \mathrm{~m} / \mathrm{s}$. At $t=0 \mathrm{sec}$, the spring of constant $k=100 \mathrm{~N} / \mathrm{cm}$ is unstretched and the block has a speed $1 m / s$ to left. The maximum extension of the spring is.

(A) 2 cm
(B) 4 cm
(C) 6 cm
A. 2 cm
B. 4 cm
C. 6 cm
D. 8 cm

Answer:

D Watch Video Solution

20. A particle is projected from point A, that is at a distance $4 R$ form the centre of the earth, with speed V_{1} in a direction making 30° with
the line joining the centre of the earth and point A, as shown. Consider gravitational
interaction only between these two. (Use $\frac{G M}{R}=6.4 \times 10^{7} \mathrm{~m}^{2} / \mathrm{s}^{2}$). The speed $\quad V_{1}$ if particle pasess grazing the surface of the earth is

A. $4 \sqrt{2} \mathrm{~km} \mathrm{~s}^{-1}$
B. $3 \sqrt{2} \mathrm{~km} \mathrm{~s}^{-1}$
C. $6 \sqrt{2} \mathrm{~km} \mathrm{~s}^{-1}$
D. $5 \sqrt{2} \mathrm{~km} \mathrm{~s}^{-1}$

Answer: A

- Watch Video Solution

21. A hill is 500 m high. Supplies are to be across the hill using a canon that can hurl packets at a speed of $125 \mathrm{~m} / \mathrm{s}$ over the hill .

The canon is located at a distance of 800 m
from the foot to hill and can be viewed on the ground at a speed of $2 \mathrm{~m} / / \mathrm{s}$, so that its distance from the hill can be adjusted. What is the shortest time (in second) in which a packet can reach on the ground across the hill $? g=10 \mathrm{~m} / \mathrm{s}^{2}$.
22. A ring - shaped tube contains two ideal gases with equal masses and relative molar masses $M_{1}=32$ and $M_{2}=28$. The gases are separated by one fixed partition and another movable stopper S which can move freely without friction inside the ring. What is the value of the angel α (in degree) at equilibrium

(Watch Video Solution

23. A current - carrying uniform square frame
is suspended from hinged support as shown
in the diagram such that it can freely rotate about its upper side. The length and mass of each side of the frame are 2 m and 4 kg respectively. A uniform magnetic field $\vec{B}=(3 \hat{i}+4 \hat{j})$ is applied. When the wireframe is rotated to 45° from vertical and released it remains in equilibrium. What is the magnitude of current (in A) in the wire frame?

Watch Video Solution

24. A plane is in level flight at a constant speed such that the speed of the air below the wings
is $144 \mathrm{~km} \mathrm{~h}^{-1}$ and above the wing is $180 \mathrm{~km} \mathrm{~h}^{-1}$. If each of its wings has an area of $25 \mathrm{~m}^{2}$, then the mass (in kg) of the plane is $\left[\rho_{\text {air }}=1 \mathrm{~kg} \mathrm{~m}^{-3}, g=10 \mathrm{~ms}^{-2}\right]$
25. An thin rod of negligible mass and area of
cross - section $4 \times 10^{-6} \mathrm{~m}^{2}$, suspended
vertically from one end, has a length of 0.5 m
at $100^{\circ} \mathrm{C}$. The rod is cooled to $0^{\circ} \mathrm{C}$ but prevented from contracting by attaching a mass at the lower end. The value of this mass is (in Kg)
(Given, coefficient of linear expansion is

$$
\begin{aligned}
& 10^{-5^{\circ}} \mathrm{C}^{-1}, \quad \text { Young's modulus is } \\
& \left.Y=10^{11} \mathrm{Nm}^{-2} \text { and } g=10 \mathrm{~ms}^{-2}\right)
\end{aligned}
$$

