đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 24

Physics

1. Which of these materials requires the least
value of magnetic field strength to magnetize
it ?
A. Nickel
B. Silver
C. Tungsten
D. Sodium Chloride

Answer: A

D Watch Video Solution
2. A current of 2 A flows through a 2Ω resistor when connected across a battery. The same battery supplies a current of 0.5 A when
connected across a 9Ω resistor The internal resistance of the battery is

$$
\begin{aligned}
& \text { A. } \frac{1}{3} \Omega \\
& \text { B. } \frac{1}{4} \Omega \\
& \text { C. } 5 \Omega \\
& \text { D. } 0.5 \Omega
\end{aligned}
$$

Answer: A
(Watch Video Solution
3. The V - I graphs for a conductor at temperature T_{1} and T_{2} are shown in the figure $\left(T_{2}-T_{1}\right)$ is proportional to

A. $\tan \theta$
B. $\sin \theta$

C. $\cot 2 \theta$

D. $\cos 2 \theta$

Answer: C

D Watch Video Solution

4. A superconducting loop of radius R has self inductance L, A uniform \& constant magnetic field B is applied perpendicular to the plane of the loop.Initially current in this loop is zero.The loop is rotated about its diameter by
180°. Find the current in the loop after rotation.
A. zero
B. $\frac{B \pi R^{2}}{L}$
C. $\frac{2 B \pi R^{2}}{L}$
D. $\frac{B \pi R^{2}}{2 L}$

Answer: C
(Watch Video Solution
5. A solid sphere of radius R has a charge Q distributed in its volume with a charge density
$\rho=k r^{a}$, where k and a are constants and r is
the distance from its centre. If the electric field
at $r=\frac{R}{2}$ is $\frac{1}{8}$ times that $r=R$, find the
value of a.
A. 2
B. 3
C. 2.5
D. 0.2

Answer: A

- Watch Video Solution

6. Two balls with equal charge are in a vessel
with ice at $-10^{\circ} \mathrm{C}$ at a distance of 25 cm from
each other. On forming water at $0^{\circ} C$, the balls are brought nearer to 5 cm for the interaction between them to be same. If the dielectric constant of water at $0^{\circ} C$ is 80 , the dielectric constant of ice at $-10^{\circ} C$ is
A. 40
B. 3.2
C. 20
D. 6.4

Answer: B

D Watch Video Solution
7. A circular coil of radius R carries a current i.

The magnetic field at its centre is B. The
A. $R \sqrt{2}$
B. $R \sqrt{3}$
C. 2 R
D. 3R

Answer: B
(Watch Video Solution
8. A Carnot engine, having an efficiency of $\eta=\frac{1}{10}$ as heat engine, is used as a refrigerator. If the work done on the system is 10 J , the amount of energy absorbed from the reservoir at lower temperature is
A. 99 J
B. 90 J
C. 1 J
D. 100 J

Answer: B
9. Two bodies of specific heats s_{1} and s_{2}
having same heat capacities are combinated
to form a single composite body. Find the specific heat of the composite body.
A. $S_{1}+S_{2}$
B. $\frac{S_{1}+S_{2}}{2}$
C. $\frac{2 S_{1} S_{2}}{S_{1}+S_{2}}$
D. $\frac{1}{S_{1}}+\frac{1}{S_{2}}$

Answer: C

D Watch Video Solution

10. The phase difference between two points
separated by 0.8 m in a wave of frequency 120

Hz is 0.5π. The wave velocity is
A. $144 m s^{-1}$
B. $384 m s^{-1}$
C. $256 m s^{-1}$
D. $720 \mathrm{~ms}^{-1}$

Answer: B

- Watch Video Solution

11. Three blocks are arranged on a horizontal table $A B C D$ as shown in the figure . The strings and pulleys are massless and both the pulleys stand vertical . The strings connecting blocks m_{1} and m_{2} are also vertical and are perpendicular to faces $A B$ and $B C$ which are mutually perpendicular to each other . If m_{1} and m_{2} are 3 kg and 4 kg respectively.

Coefficient of friction between the block $m_{3}=10 \mathrm{~kg}$ and the surface is $\mu=0.6$ then, frictional force on m_{3} is

A. 30 N
B. 40 N
C. 50 N

D. 60 N

Answer: C

D Watch Video Solution

12. Two gold pieces, each of mass 0.035 g are
placed in a box of mass 2.3 g . The total mass of the box with gold pieces is
A. 2.3 g
B. 2.4 g
C. 2.37 g
D. 2.370 g

Answer: B

D Watch Video Solution

13. A small smooth disc of mass m and radius
moving with an initial velocity ' v ' along the positive $x-$ axis collided with a big disc of mass $2 m$ and radius $2 r$ which was initially at rest with its centre at origin as shown in
figure.

If the coefficient of restitution is 0 then
velocity of larger disc after collision is
A. $\frac{8}{27} v \hat{i}-\frac{2 \sqrt{2}}{27} v \hat{j}$
B. $\frac{8}{27} v \hat{i}-\frac{\sqrt{2}}{27} v \hat{j}$
C. $\frac{v}{3} \hat{i}$

$$
\text { D. } \frac{2 \sqrt{2}}{27} v \hat{i}-\frac{8}{27} v \hat{j}
$$

Answer: A

- Watch Video Solution

14. A conical portion of radius R and height H
is removed from the bottom of a cylinder of radius R. The volume of the remaining cylinder is V and its mass is M. It is suspended by a string in a liquid of density ρ where it stays vertical . The upper surface of the cylinder is at
depth h below the liquid surface. The force on
the bottom of the cylinder by the liquid is

A. Mg
B. $M g-V \rho g$
C. $M g+\pi R^{2} h \rho g$
D. $\rho g\left(V+\pi R^{2} h\right)$

Answer: D

D Watch Video Solution

15. A spherical ball of density ρ and radius
0.003 m is dropped into a tube containing a
viscous fluid, filled up to the 0 cm mark as
shown in the figure . Viscosity of the fluid
$=1.260 \mathrm{Nm}^{-2} s^{-1} \quad$ and its density
$\rho_{L}=\rho / 2=1260 \mathrm{kgm}^{-3}$. Assume the ball
reaches a terminal speed by the 10 cm mark.

Find the time taken by the ball to traverse the distance between the 10 cm and 20 cm mark. [$\mathrm{g}=$ acceleration due to gravity $\left.=10 \mathrm{~ms}^{-2}\right]$

A. 2 s
B. 3 s
C. 5 s
D. 1.5 s

Answer: C

D Watch Video Solution
16. A spool of mass M and radius $2 R$ lies on an inclined plane as shown in the figure. A
light thread is wound around the connecting
tube of the spool and its free end carries a weight of mass m. The value of m so that system is in equilibrium is

A. $2 M \sin \alpha$
B. $M \sin \alpha$
C. $2 M \tan \alpha$
D. $M \cos \alpha$

Answer: A

D Watch Video Solution

17. A carrier wave of peak voltage 12 V is used
to transmit a message signal . The peak
voltage of the modulating signal in order to
have a modulation index of 75% is
A. 8 V
B. 6 V
C. 7 V
D. 9 V

Answer: D

D Watch Video Solution

18. The 6 V Zener diode shown in the figure has
negligible resistance and a knee current of 5
mA . The minimum value of R (in Ω) so that the
voltage across it does not fall below 6 V is

A. 40
B. 60
C. 72
D. 80

Answer: D

19. For a material medium, the values of refractive index for violet and colours are given as $\quad n_{v}=1.56$ and $n_{r}=1.44$. The dispersive power of a prism made out of this material is
A. 0.06
B. 0.24
C. 0.03
D. none of these

Answer: B

D Watch Video Solution

20. A ray of light is incident from a denser to a rarer medium. The critical angle for total internal reflection is $\theta_{i c}$ and Brewster's angle of incidence is $\theta_{i B}$ such that $\frac{\sin \theta_{i c}}{\sin \theta_{i B}}=\eta=1.28$. The relative refractive index of the two media is
A. 0.4
B. 0.2
C. 0.9
D. 0.8

Answer: D

D Watch Video Solution

21. Power supplied to a mass 2 kg varies with time as $P=\frac{3 t^{2}}{2}$ watt. Here t is in second. If velocity of particle at $t=0$ is $v=0$, the velocity of particle at time $t=2 s$ will be:

- Watch Video Solution

22. A spring of force constant $200 \mathrm{Nm}^{-1}$ has a block of mass 10 kg hanging at its one end and the other end of the spring is attached to the celling of an elevator. The elevator is rising upwards with an acceleration of $\frac{g}{4}$ and the block is in equilibrium with respect to the elevator . when the acceleration of the elevator suddenly ceases, the block starts oscillating. What is the amplitude (in m) of these oscillations?
23. If the first excitation energy of a hydrogen -
like atom is 27.3 eV , then ionization energy of this atom will be

- Watch Video Solution

24. Consider the vernier callipers shown below.

The instrument has no zero error.
If $1 \mathrm{~m} . \mathrm{s}$. $\mathrm{d}=1 \mathrm{~mm}$ and $7 \mathrm{~m} . \mathrm{s} . \mathrm{d}=8$ v.s.d, of the
rod shown in the figure? [Given , the $4^{t h}$ v.s.d

coincides with m.s d]

D Watch Video Solution

25. The electric field associated with a light wave is given by

$$
E=E_{0} \sin \left[\left(1.57 x 10^{7} m^{-1}(x-c t)\right]\right.
$$

Find
the stopping potential when this light is used
in an experiment on photoelectric affect with
a metal having work - function 1.9 eV .

- Watch Video Solution

