đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 26

Physics

1. A magnetised wire of magnetic moment
' M ' and length ' l ' is bent in the form of a
semicircle of radius ' r '. The new magnetic

moment is

A. $\frac{2 M}{\pi}$
B. 2 M
C. $\frac{M}{\pi}$
D. zero

Answer: A
(Watch Video Solution
2. Two cells, having the same emf, are connected in series through an external resistance R. Cells have internal resistance r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$ respectively. When the circuit is closed, the potential difference across the first cell is zero the value of R is

$$
\begin{aligned}
& \text { A. } \frac{r_{1}+r_{2}}{2} \\
& \text { B. } \frac{r_{1}-r_{2}}{2} \\
& \text { C. } r_{1}+r_{2} \\
& \text { D. } r_{1}-r_{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution

3. In a magnetic field of $0.05 T$, area of a coil changes from $101 \mathrm{~cm}^{2}$ to $100 \mathrm{~cm}^{2}$ without changing the resistance which is 2Ω. The amount of charge that flow during this period is
A. $2.5 \times 10^{-6} C$
B. $2 \times 10^{-6} C$
C. $10^{-6} C$
D. $8 \times 10^{-6} C$

Answer: A

D Watch Video Solution

4. A spherical portion has been removed from
a solid sphere having a charge distributed uniformly in its volume as shown in the figure.

The electric field inisde the emptied space is

A. zero everywhere

B. non - zero and uniform

C. non-uniform

D. zero only at its centre

Answer: B

- Watch Video Solution

5. A charged particle q is placed at the centre O of cube of length L(A B C D E F G H). Another same charge q is placed at a distance L from O .

Then the electric flux through ABCD is

A. $\frac{q}{4 \varepsilon_{0}}$
B. $\frac{q}{6 \varepsilon_{0}}$
C. $\frac{q}{2 \varepsilon_{0}}$
D. $\frac{q}{3 \varepsilon_{0}}$

Answer: B

D Watch Video Solution

6. A disc of radius R rotates with constant angular velocity ω about its own axis. Surface charge density of this disc varies as $\sigma=\alpha r^{2}$, where r is the distance from the centre of disc.

Determine the magnetic field intensity at the
centre of disc.
A. $\mu_{0} a \omega R^{3}$
B. $\frac{\mu_{0} a \omega R^{3}}{6}$
C. $\frac{\mu_{0} a \omega R^{3}}{8}$
D. $\frac{\mu_{0} a \omega R^{3}}{3}$

Answer: B

D Watch Video Solution

7. An ideal gas is taken through the cycle
$A \rightarrow B \rightarrow C \rightarrow A$, as shown in the figure, If
the net heat supplied to the gas in the cycle is
5 J, the work done by the gas in the process C to A is

A. $-5 J$
B. $-10 J$

C. $-15 J$

$$
\text { D. }-20 J
$$

Answer: A

D Watch Video Solution

8. The displacement of particle in a medium
can be
expressed
as
$y=10^{-6} \sin (100 t-20 x+\pi / 4) \mathrm{m}$, where t
is in seconds and x in meters. The speed of the
wave is
A. $2000 m s^{-1}$
B. $5 m s^{-1}$
C. $20 m s^{-1}$
D. $5 \pi s^{-1}$

Answer: B

D Watch Video Solution

9. The upper half of an inclined plane with inclination ϕ is perfectly smooth while the
lower half is rough. A body starting from rest
at the top will again come to rest at the bottom if the coefficient of friction for the lower half is given by
A. $\tan \phi$
B. $2 \tan \phi$
C. $2 \cos \phi$
D. $2 \sin \phi$

Answer: B

D Watch Video Solution
10. Which one of the following represents the correct dimensions of the coefficient of viscosity?

$$
\begin{aligned}
& \text { A. }\left[M L^{-1} T^{-2}\right] \\
& \text { B. }\left[M L T^{-1}\right] \\
& \text { C. }\left[M L^{-1} T^{-1}\right] \\
& \text { D. }\left[M L^{-2} T^{-2}\right]
\end{aligned}
$$

Answer: C

11. A particle is placed at the origin and a force
$\mathrm{F}=\mathrm{Kx}$ is acting on it (where k is a positive constant). If $U_{(0)}=0$, the graph of $U(x)$ verses x will be (where U is the potential energy function.)
A.

B.

C.

D.

Answer: A

- Watch Video Solution

12. Three object A, B and C are kept is a straight frictionless horizontal surface. These have masses $m, 2 m$ and m repectively. The object A move toward B with a speed $9 m / s$ and makes an elastic collision with a there
after B makes complately inclesis with C. All motion over on the same straight line. Find the first speed of the object C

A. 4
B. 7
C. 10
D. 12

Answer: A

D Watch Video Solution

13. A large tank filled with water to a height h
is to be emptied through a small hole at the
bottom. The ratio of times taken for the level
of water to fall from h to $\frac{h}{2}$ and from $\frac{h}{2}$ to zero is
A. $\sqrt{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\sqrt{2}-1$
D. $\frac{1}{\sqrt{2}-1}$

Answer: C

D Watch Video Solution

14. A wire fixed at the upper \& stretches by
length I by applying a force F. What is the work done by stretching the wire ?
A. $\frac{F}{2 l}$
B. FI
C. 2FI
D. $\frac{F l}{2}$

Answer: D

- Watch Video Solution

15. Which among the following has a hydrogen-like spectrum and whose lines have wavelengths four times shorter that those of atomic hydrogen?
A. Helium ion
B. Beryllium ion
C. Lithium ion
D. None of these

Answer: A

D Watch Video Solution
16. Name the electromagnetic waves used for studying crystal structure of solids. What is its frequency range?
A. Microwave
B. visible radiation
C. Ultraviolet
D. X - rays

Answer: D

D Watch Video Solution

17. Write down the output at X for the inputs A
$=0, B=0$ and $A=1, B=1$

A. $x=0$ and 0
B. $x=0$ and 1
C. $x=1$ and 0
D. $x=1$ and 1

Answer: D

- Watch Video Solution

18. A battery is connected between two points
A and B on the circumference of a uniform conducting ring of radius r and resistance R.

One of the arcs $A B$ of the ring subtends an
angle θ at the centre. The value of the magnetic induction at the centre due to the current in the ring is
A. proportional to $\left(180^{\circ}-\theta\right)$
B. inversely proportional to r
C. zero, only if $\left(\theta=180^{\circ}\right)$

D. zero for all values of θ

Answer: D

D Watch Video Solution

19. In an experiment to determine the focal
length (f) of a concave mirror by the $u-v$ method, a student places the object pin A on
the principal axis at a distance x from the pole
P. The student looks at the pin and its inverted image from a distance keeping his/her eye in
line with PA. When the student shifts his/her eye towards left, the image appears to the right of the object pin. Then,
A. $x<f$
B. $f<x<2 f$
C. $x=2 f$
D. $x>2 f$

Answer: B

D Watch Video Solution
20. Yellow light is used in a single slit diffraction experiment with slit width of 0.6 mm. If yellow light is replaced by X-rays, then the observed pattern will reveal,
A. that the central maximum is narrower
B. more number of fringes
C. less number of fringes
D. no diffraction pattern

Answer: D

D Watch Video Solution
21. Two cylindrical wire A and B have the same resistance . The ratio of their specific resistances and diameters are 1:2 each, then what is the ratio of the length of B to the length of A ?

D Watch Video Solution

22. Earth receives $1400 \mathrm{Wm}^{-2}$ of solar power.

If all the solar energy falling on lens of area
$0.2 m^{2}$ is focussed on to a block of ice of mass

280 g , then what is the time (in min) taken by

Abstract

the ice to melt completely ? $\left[L_{\mathrm{fusion}}=3.3 \times 105 \mathrm{Jkg}^{-1}\right]$

D Watch Video Solution

23. Consider a pair of identical pendulums,
which oscillate with equal amplitude
independently such that when one pendulum
is at its extreme position making an angle of
2° to the right with the vertical , the other pendulum makes an angle of 1° to the left of
the vertical. What is the phase difference between the pendulums?

D Watch Video Solution

24. A metre stick is balanced on a knife edge at
its centre. When two coins, each of mass $5 g$
are put one on of the other at the 12 cm mark,
the stick is found to balanced at 45 cm . The mass of the metre stick is.

D Watch Video Solution

25. Graviational acceleration on the surface of
planet is $\frac{\sqrt{6}}{11} g$. where g is the gravitational acceleration on the surface of the earth. The average mass density of the planet is $\frac{2}{3}$ times that of the earth. If the escape speed on the surface of the earth is taken to be $11 \mathrm{kms}^{-1}$ the escape speed on the surface of the planet in $k m s^{-1}$ will be
