©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 3

Physics

1. A ball is thrown with a speed u , at an angle θ
with the horizontal. At the highest point of its
motion, the strength of gravity is somehow
doubled. Taking this change into account, the total time of flight of the projectile is

$$
\begin{aligned}
& \text { A. } \frac{2 u \sin \theta}{g} \\
& \text { B. } \frac{3}{2} \frac{u \sin \theta}{g} \\
& \text { C. } \frac{3}{4} \frac{u \sin \theta}{g} \\
& \text { D. }\left(\frac{\sqrt{2}+1}{\sqrt{2}}\right) \frac{u \sin \theta}{g}
\end{aligned}
$$

Answer: D

D Watch Video Solution

2. A screen is at distance $D=80 \mathrm{~cm}$ form a
diaphragm having two narrow slits S_{1} and S_{2}
which are $d=2 \mathrm{~mm}$ apart.
Slit S_{1} is covered by a transparent sheet of thickness
$t_{1}=2.5 \mu m$ slit S_{2} is covered by another sheet of thickness
$t_{2}=1.25 \mu \mathrm{~m}$ as shown if Fig. 2.52.
Both sheets are made of same material having
refractive index $\mu=1.40$

Water is filled in the space between
diaphragm and screen. A mondichromatic
light beam of wavelength $\lambda=5000 \AA$ is incident normally on the diaphragm.

Assuming intensity of beam to be uniform, calculate ratio of intensity of C to maximum intensity of interference pattern obtained on the screen $\left(\mu_{w}=4 / 3\right)$

A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{3}{5}$

Answer: A

D Watch Video Solution

3. A stream of water flowing horizontally with
a speed of $15 \mathrm{~ms}^{-1}$ pushes out of a tube of cross sectional area $10^{-2} m^{2}$ and hits a
vertical wall nearby. What is the force exerted on the wall by the impact of water assuming.that it does not rebound? (Density of water $=1000 \mathrm{kgm}^{3}$)
A. $2.25 \times 10^{3} \mathrm{~N}$
B. $2.5 \times 10^{3} \mathrm{~N}$
C. $3.0 \times 10^{3} \mathrm{~N}$
D. $3.5 \times 10^{3} \mathrm{~N}$

Answer: A

4. A partition wall has two layers of different materials A and B in contact with each other.

They have the same thickness but the thermal conductivity of layer A is twice that of layer B.

At steady state the temperature difference across the layer B is 50 K , then the corresponding difference across the layer A is
A. 50 K
B. 12.5 K
C. 25 K

D. 60 K

Answer: C

D Watch Video Solution

5. The mean lives of a radioactive substance are 1620 years and 405 years for α emission and β emission respectively. Find out the time during which three fourth of a sample will decay if it is decaying both by α-emission and
β-emission simultaneously. $\left(\log _{e} 4=1.386\right)$.
A. 643 years
B. 449 years
C. 528 years
D. 279 years

Answer: B

- Watch Video Solution

6. A wire of length $L=20 \mathrm{~cm}$ is bent into a semicircular arc and the two equal halves of the arc are uniformly charged with charges
$+Q$ and $-Q$ as shown in the figure. The magnitude of the charge on each half is
$|Q|=10^{3} \varepsilon_{0}$, where ε_{0} is the permittivity of free the space. The net electric field at the center O is

A. $\left(25 \times 10^{3}\right) \hat{i} N C^{-1}$
B. $\left(50 \times 10^{3}\right) \hat{i} N C^{-1}$
C. $\left(25 \times 10^{3}\right) \hat{j} N C^{-1}$

$$
\text { D. }\left(50 \times 10^{3}\right) \hat{j} N C^{-1}
$$

Answer: A

- Watch Video Solution

7. A vertical spring of force cosntant $100 \mathrm{~N} / \mathrm{m}$
is attached with a hanging mass of 10 kg . Now
an external force is applied on the mass so
that the spring is stretched by additional 2 m .

The work done by the force F is

$\left(g=10 m / s^{2}\right)$

A. 200 J
B. 400 J
C. 100 J

D. 600 J

Answer: A

D Watch Video Solution

8. The radii of two planets are respectively
R_{1} and R_{2} and their densities are respectively ρ_{1} and ρ_{2}. The ratio of the accelerations due to gravity at their surface is

$$
\text { A. } \frac{\rho_{1} R_{2}^{2}}{\rho_{2} R_{1}^{2}}
$$

B. $\frac{\rho_{1} R_{1}^{2}}{\rho_{2} R_{2}^{2}}$
C. $\frac{\rho_{2} R_{1}}{\rho_{1} R_{2}}$
D. $\frac{\rho_{1} R_{1}}{\rho_{2} R_{2}}$

Answer: D

D Watch Video Solution

9. The magnetic flux through a circuit of resistance R changes by an amount $\Delta \phi$ in a time Δt. Then the total quantity of electric
charge Q that passes any point in the circuit during the time Δt is represent by

$$
\begin{aligned}
& \text { A. } Q=\frac{1}{R} \frac{\Delta \phi}{\Delta t} \\
& \text { B. } Q=\frac{\Delta \phi}{R} \\
& \text { C. } Q=\frac{\Delta \phi}{\Delta t} \\
& \text { D. } Q=R \frac{\Delta \phi}{\Delta t}
\end{aligned}
$$

Answer: B

D Watch Video Solution

10. The shortest wavelength in Lyman series is
91.2 nm . The longest wavelength of the series
is
A. 121.6 nm
B. 182.4 nm
C. 234.4 nm
D. 364.8 nm

Answer: A

D Watch Video Solution
11. Two infinite sheets carrying current in same direction (of equal current per unit length K) are separated by a distance d. A proton is released from a point between the plates with a velocity parallel to the sheets but perpendicular to the direction of current in the sheets. Then the path of the proton is

A. circle
B. helix
C. straight line
D. straight line only if it is released from a
point exactly midway between the two plates.

Answer: C
(Watch Video Solution
12. A block of wood is floating in water at $0^{\circ} C$.

The temperature of water is slowly raised from
$0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$. How will the percentage of volume of block V above water level change with rise in temperature?
A. increase
B. decrease
C. first increase and then decrease
D. first decrease and then increase

- Watch Video Solution

13. A bat moving at $10 \mathrm{~ms}^{-1}$ towards a wall sends a sound signal of 8000 Hz towards it.

On reflection it hears a sound of frequency f .
The value of g in Hz is close to (speed to sound $=320 \mathrm{~ms}^{-1}$):
A. 8258
B. 8424
C. 8000

D. 8516

Answer: D

D Watch Video Solution

14. A particle of mass 2 kg moving with a speed of $6 \mathrm{~m} / \mathrm{s}$ collides elastically with another particle of mass 4 kg travelling in same direction with a speed of $2 \mathrm{~m} / \mathrm{s}$. The maximum possible deflection of the 2 kg particle is
A. 37°
B. 45°
C. 53°
D. 60°

Answer: C

D Watch Video Solution

15. The displacement of a particle of mass $3 g$ executing simple harmonic motion is given by $x=3 \sin (0.2 t)$ in $S I$ units. The kinetic energy
of the particle at a point which is at a
displacement equal to $\frac{1}{3}$ of its amplitude from its mean position is

A. 12×10^{-3} J
B. 25×10^{-3} J
C. $0.48 \times 10^{-3} \mathrm{~J}$
D. $0.24 \times 10^{-3} \mathrm{~J}$

Answer: C
(Watch Video Solution
16. A bullet is fired from a gun. The force on
the bullet is given by $F=600-2 \times 10^{5} \mathrm{t}$, where F is in newtons and t in seconds. The force on the bullet becomes zero as soon as it leaves the barrel. What is the average impulse imparted to the bullet?
A. 9 Ns
B. 1.8 Ns
C. 0.9 Ns
D. 0.3 Ns

Answer: C

- Watch Video Solution

17. The moment of inertia of a rigid body in terms of its angular momentum L and kinetic energy K is
A. $\frac{L^{2}}{K}$
B. $\frac{L^{2}}{2 K}$
C. $\frac{L}{2 K^{2}}$
D. $\frac{L}{2 K}$

Answer: B

D Watch Video Solution

18. In a system used for spraying cars, a car
body is positively charged. Neutral droplets of
paint are then attracted to the car because
the positive car body induces a charge on the droplets of paint. Which diagram best shows the charge pattern?

A.

Answer: D
19. In the given circuit, Reading of ammeter is 1
A. If each of the 4Ω resistor is replaced by 2Ω resistor, the reading of ammeter will become nearly-

A. $1.11 A$
B. $1.25 A$
C. 1.34 A
D. 1.68 A

Answer: A

D Watch Video Solution

20. The temperature of n moles of an ideal gas
is increased from T to 4 T through a process
for which pressure $P=a T^{-1}$ where a is a constant. Then the work done by the gas is
A. nRT
B. 4 nRT
C. 2 nRT
D. 6 nRT

Answer: D

D Watch Video Solution

21. A point P moves in a counter-clockwise direction on a circular path as shown in the figure. The movement of P is such that it
sweeps out a length $s=t^{3}+5$ where s is in
the metre and t is in seconds. The radius of the path is 27 m . The acceleration of P when $\mathrm{t}=$

$$
\left.3 \mathrm{~s} \text { is } \ldots \quad m / s^{2} \text {. (Take } \sqrt{13}=3.6\right)
$$

D Watch Video Solution

22. Coefficient of thermal conductivity is the product of heat, distance and reciprocal of (area x difference in temperature x time). The new value of a unit of coefficient of thermal conductivity, if fundamental units are $21.6 \mathrm{~kg}, 1$ decimetre, 4 K and 1 minute will be $\times 10^{-6}$ new units.

- Watch Video Solution

23. Two trains A and B of length 400 m each are moving on two parallel tracks with a
uniform speed of $72 \mathrm{kmh}^{-1}$ in the same direction, with A ahead of B. The driver of B decides to overtake A and accelerates by $1 m s^{-2}$. If after $50 s$, the guard of B just brushes past the driver of A, what was the original distance between them?

D Watch Video Solution

24. Two forces whose magnitudes are in the ratio $3: 5$ give a resultant of 28 N . If the angle
of their inclination is 60°, find the magnitude of each force.

D Watch Video Solution

25. Consider the situation shown in figure.

Find the maximum angle θ for which the light
suffers total internal reflection at the vertical

surface.

