©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 5

Physics

1. The amplitude of a wave disturbance propagating in the positive x-direction is given
$y=\frac{1}{1+x^{2}}$ at $t=0$ and $y=$
at $t=2 s$
where, x and y are in meter. The shape of the
wave disturbance does not change during the
propagation. what is the velocity of the wave?
A. $0.5 m s^{-1}$
B. $2.0 m s^{-1}$
C. $1.0 m s^{-1}$
D. $4.0 m s^{-1}$
2. Twelve resistors each of resistance 1Ω are connected in the circuit shown in figure. Net resistance between point A and H would be

A. $\frac{5}{6} \Omega$
B. 1Ω
C. $\frac{3}{4} \Omega$
D. 4Ω

Answer: C

D Watch Video Solution
3. A uniform rod of length 2.0 m is suspended
through its endpoint about which it performs
small angular oscillations in the vertical plane,
its time period is nearly
A. 1.6s
B. 1.8 s
C. 2.0 s
D. 2.3 s

Answer: D
(Watch Video Solution
4. There is a hole at the bottom of a large open vessel. If water is filled upto a height h, it
flows out in time t. if water is filled to a height 4h, it will flow out in time
A. t
B. 4 t
C. 2 t
D. $\frac{t}{4}$

Answer: C
5. A simple pendulum with a bob of mass m and a conducting wire of length L , swings under gravity with an angular amplitude 2θ. If the horizontal component of the earth's magnetic field perpendicular to the plane of motion of the pendulum is B, then the maximum emf induced across the pendulum is

$$
\begin{aligned}
& \text { A. } 2 B L \sin \left(\frac{\theta}{2}\right)(g L)^{1 / 2} \\
& \text { B. } B L \sin \left(\frac{\theta}{2}\right)(2 g L)^{1 / 2}
\end{aligned}
$$

C. $2 B L \sin \left(\frac{\theta}{2}\right)(g L)^{3 / 2}$
D. $B L \sin \left(\frac{\theta}{2}\right)(g L)^{2}$

Answer: A

- Watch Video Solution

6. The angular velocity of a particle is $\vec{w}=4 \hat{i}+\hat{j}-2 \hat{k}$ about the origin. If the position vector of the particle is $2 \hat{i}+3 \hat{j}-3 \hat{k}$, then its linear velocity is
A. $5 \hat{i}+8 \hat{j}-14 \hat{k}$
B. $3 \hat{i}+8 \hat{j}+10 \hat{k}$
C. $8 \hat{i}+3 \hat{j}-10 \hat{k}$
D. $-8 \hat{i}+3 \hat{j}-2 \hat{k}$

Answer: B

D Watch Video Solution

7. A thermally insulated piece of metal is heated under atmospheric pressure by an electric current so that it receives electric
energy at a constant power P. This leads to an increase of absolute temperature T of the metal with time t as follows:
$T(t)=T_{0}\left[1+a\left(t-t_{0}\right)\right]^{1 / 4}$. Here, a, t_{0} and
T_{0} are constants. The heat capacity $C_{p}(T)$ of the metal is

$$
\begin{aligned}
& \text { A. } \frac{4 P}{a T_{0}} \\
& \text { B. } \frac{4 P T^{3}}{a T_{0}^{4}} \\
& \text { C. } \frac{2 P T^{3}}{a T_{0}^{4}} \\
& \text { D. } \frac{2 P}{a T_{0}}
\end{aligned}
$$

8. An 8 kg metal block of dimensions $16 \mathrm{~cm} \times$
$8 \mathrm{~cm} \times 6 \mathrm{~cm}$ is lying on a table with its face
of largest area touching the table. If
$g=10 \mathrm{~ms}^{-2}$, then the minimum amount of
work done in making it stand with its length
vertical is
A. 8 J
B. 6.4 J
C. 4 J

D. 12.8 J

Answer: C

D Watch Video Solution

9. Assuming f to be the frequency of the electromagnetic wave corresponding to the
first line in Balmer series, the frequency of the immediate next line is
A. 0.5 f
B. 1.35 f
C. 2.05 f

$$
\text { D. } 2.70 \mathrm{f}
$$

Answer: B

- Watch Video Solution

10. A particle of unit mass undergoes onedimensional motion such that its velocity
varies according to
$v(x)=\beta x^{-2 n}$
where β and n are constant and x is the position of the particle. The acceleration of the particle as a function of x is given by.

$$
\begin{aligned}
& \text { A. }-2 n \beta^{2} x^{-2 n-1} \\
& \text { B. }-2 n \beta^{2} x^{-4 n-1} \\
& \text { C. }-2 n \beta^{2} x^{-2 n+1} \\
& \text { D. }-2 n \beta^{2} x^{-4 n+1}
\end{aligned}
$$

Answer: B

D Watch Video Solution
11. A massive vertical wall is approaching a man at a speed μ. When it is at a distance of 10 m , the man throws a ball with speed $10 \mathrm{~m} / \mathrm{s}$ at an angle of 37°, which after having a completely elastic collision with the wall, reaches back directly into the hands of the man. The velocity of the wall is
A. $\frac{13}{3} m / s$
B. $\frac{18}{2} \mathrm{~m} / \mathrm{s}$
C. $\frac{26}{4} \mathrm{~m} / \mathrm{s}$
D. $\frac{31}{5} \mathrm{~m} / \mathrm{s}$

D Watch Video Solution

12. In Young's double-slit experiment, the ratio
of intensities of a bright band and a dark band
is $16: 1$. The ratio of amplitudes of interfering
waves will be
A. $16: 1$
B. $4: 1$
C. $3: 1$
D. 5:3

Answer: D

D Watch Video Solution

13. If the distance between the Earth and the
sun shrinks to half the present distance, then
find the new duration of the year.
A. 45 days
B. 100 days

C. 182 days

D. 129 days

Answer: D

D Watch Video Solution

14. If r is the total radius and v is the orbital
velocity of an electron in a hydrogen atom, then its magnetic dipole moment is
A. $\frac{e v r}{2 \pi}$
B. evr
C. $\frac{e v r}{2}$
D. ev

Answer: C

D Watch Video Solution

15. A wire is bent in the form of a circular arc of radius r with a straight portion $A B$. If the current in the wire is i, then the magnetic
induction at point O is

A. $\frac{\mu_{0} i}{2 \pi r} \tan \phi$
B. $\frac{\mu_{0} i}{2 \pi r}(\pi-\phi)$
C. $\frac{\mu_{0} i}{2 \pi r}(\pi-\phi+\tan \phi)$
D. $\frac{\mu_{0} i}{2 \pi r}(\pi+\tan \phi)$

Answer: C

D Watch Video Solution

16.

Uniform rod $A B$ is hinged at end A in
horizontal position as shown in the figure. The other end is connected to a block through a
massless string as shown. The pulley is

smooth and massless. Mass of block and rod is

same and is equal to m Then acceleration of block just after release from this position is

> A. $\frac{6 g}{13}$
> B. $\frac{g}{4}$
> C. $\frac{3 g}{8}$
> D. None

Answer: C

17. There are two radioactive substance A and
B. Decay constant of B is two times that of A.

Initially, both have equal number of nuclei.
After n half-lives of A, rates of disintegration of both are equal. The value of n is.
A. 4
B. 2
C. 1
D. 5

Answer: C

D Watch Video Solution

18. A student performs an experiment to determine the Young's modulus of a wire, exactly $2 m$ long, by Searle's method. In a particular reading, the student measures the extension in the length of the wire to be
0.8 mm with an uncertainty of $\pm 0.05 \mathrm{~mm}$ at a load of exactly 1.0 kg , the student also measures the diameter of the wire to be
0.4 mm with an uncertainty of $\pm 0.01 \mathrm{~mm}$. Take $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ (exact). the Young's modulus obtained from the reading is

> A. $(2.0 \pm 0.3) \times 10^{11} \mathrm{Nm}^{-2}$
> B. $(2.0 \pm 0.2) \times 10^{11} \mathrm{Nm}^{-2}$
> C. $(2.0 \pm 0.1) \times 10^{11} \mathrm{Nm}^{-2}$
> D. $(2.0 \pm 0.5) \times 10^{11} \mathrm{Nm}^{-2}$

Answer: B

D Watch Video Solution
19. An aircraft loops the loop of radius $R=500$ m with a constant velocity $v=360 \mathrm{~km} / \mathrm{h}$. The weight of the flyer of mass $m=70 \mathrm{~kg}$ in the lower, upper and middle points of the loop will respectively be-
A. $2.1 \mathrm{kN}, 0.7 \mathrm{kN}, 1.5 k N$
B. $0.7 \mathrm{kN}, 1.5 \mathrm{kN}, 2.1 \mathrm{kN}$
C. $1.5 \mathrm{kN}, 2.1 \mathrm{kN}, 0.7 \mathrm{kN}$
D. None of these
20.

Given
$R_{1}=5.0 \pm 0.2 \Omega$, and $R_{2}=10.0 \pm 0.1 \Omega$.
What is the total resistance in parallel with possible \% error?
A. $15 \Omega \pm 2 \%$
B. $3.3 \Omega \pm 3 \%$
C. $15 \Omega \pm 3 \%$
D. $3.3 \Omega \pm 7 \%$

Answer: B

D Watch Video Solution

21. Two plans mirrors are inclined to each other at some angle .A ray of light incident at 30° on one,after reflection form the other retraces its path .The angles between the mirrors is:
A. 30°
B. 45°
C. 60°
D. 90°

Answer: 30°

D Watch Video Solution

22. Three charges $Q,+q$ and $+q$ are placed at
the vertices of a right -angle isosceles triangle
as shown below. The net electrostatic energy
of the configuration is zero if the value of Q is

- Watch Video Solution

23. A binary star consists of two stars A(mass
$=22 M_{s}$) and $\mathrm{B}\left(\right.$ mass $\left.=11 M_{s}\right)$ where M_{s} is
the mass of the sun, they are separated by
distance d and are rotating about their center of mass, which is stationary. The ratio of the total angular momentum of the binary to the angular momentum of star B about the centre of mass is

D Watch Video Solution

24. Liquids A and B are at $30^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$, respectively. When mixed in equal masses,the temperature of the mixture is found to be 26°
C, The specific heats of A and B are in the ratio
of $m: n$, where m and n are integers, then find minimum value of $m+n$.

D Watch Video Solution

25. A sample of 2 kg monoatomic helium gas
(assumed ideal) is taken through the process
$A B C$ and another samples of 2 kg of the same
gas is taken through the process ADC. Given
that the molecular mass of helium $=4 \mathrm{amu}$,
find the temperature of helium in the state D.
[Take the universal gas constant
$\left.R=\frac{25}{3} \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right]$

D Watch Video Solution

