©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 6

Physics

1. Two strips of metal are riveted together at
their ends by four rivets, each of diameter 6 mm . Assume that each rivet is to carry one
quarter of the load. If the shearing stress on
the rivet is not to exceed $6.9 \times 10^{7} P a$, the maximum tension that can be exerted by the riveted strip is
A. $7.8 \times 10^{3} N$
B. $6.9 \times 10^{3} N$
C. $3.14 \times 10^{3} N$
D. none of these

Answer: A
2. A dynamometer D, which is a device used to
measure force, is attached to two blocks of masses 6 kg and 4 kg . Forces of 20 N and 10 N are applied on the blocks as shown in the figure. The reading of the dynamometer is

A. 10 N
B. 20 N
C. 6 N

D. 14 N

Answer: D

D Watch Video Solution

3. A conducting circular loop is placed in a uniform magnetic field $0.04 T$ with its plane perpendicular to the magnetic field. The radius of the loop starts shrinking at $2 \mathrm{~mm} / \mathrm{sec}$. The induced emf in the loop when the radius is 2 cm is
A. $4.8 \pi \mu V$
B. $0.8 \pi \mu V$
C. $1.6 \pi \mu V$
D. $3.2 \pi \mu V$

Answer: D

D Watch Video Solution

4. Find the velocity of photoelectrons
liberated by electromagnetic radiation of
wavelength $\lambda=18.0 \mathrm{~nm}$ from stationary $H e^{+}$ions in the ground state.

> A. $2.3 \times 10^{6} \mathrm{~ms}^{-1}$
> B. $1.3 \times 10^{6} \mathrm{~ms}^{-1}$
> C. $2.3 \times 10^{5} \mathrm{~ms}^{-1}$
> D. $1.3 \times 10^{3} \mathrm{~ms}^{-1}$

Answer: A
(Watch Video Solution
5. The total length of a sonometer wire fixed between two bridges is 110 cm . Now, two more bridges are placed to divide the length of the wire in the ratio $6: 3: 2$. If the tension in the wire is 400 N and the mass per unit length of the wire is $0.01 \mathrm{~kg} \mathrm{~m}^{-1}$, then the minimum common frequency with which all the three parts can vibrate, is
A. 1000 Hz
B. 1100 Hz
C. 100 Hz

D. 110 Hz

Answer: A

- Watch Video Solution

6. A neutron travelling with a velocity v and
kinetic energy E collides perfectly elastically
head on with the nucleus of an atom of mass number A at rest. The fraction of the total kinetic energy retained by the neutron is

$$
\text { A. }\left(\frac{1-A}{A+1}\right)^{2}
$$

B. $\left(\frac{A+1}{A-1}\right)^{2}$
C. $\left(\frac{A-1}{A}\right)^{2}$
D. $\left(\frac{A+1}{A}\right)^{2}$

Answer: A

D Watch Video Solution

7. A lead bullet strikes a target with velocity of $480 \mathrm{~m} / \mathrm{s}$. if the bullet falls dead, then the rise
in temperature of bullet is, (Assuming that heat produced is equally shared between the

bullet and target).

$$
\left(J=4.2 \times 10^{3} J / k c a l, C=0.03 k c a l / k g K\right)
$$

A. $557^{\circ} C$
B. $457^{\circ} \mathrm{C}$
C. $857^{\circ} \mathrm{C}$
D. $754^{\circ} \mathrm{C}$

Answer: B
(Watch Video Solution
8. Two beams of light having intensities I and

41 interfere to produce a fringe pattern on a screen. The phase difference between the beams is $\frac{\pi}{2}$ at point A and π at point B . Then
the difference between the resultant intensities at A and B is
A. 21
B. 41
C. 51
D. 71

Answer: B

D Watch Video Solution

9. A thin spherical shell of radius R is cut into
two equal halves and then each of its halves is
charged to the same uniform surface charge density σ. If F is the force exerted on each
half to keep them at equilibrium, then F is
proportional to

A. $\frac{1}{\varepsilon_{0}} \sigma^{2} R$
B. $\frac{1}{\varepsilon_{0}} \frac{\sigma^{2}}{R}$
C. $\frac{1}{\varepsilon_{0}} \frac{\sigma}{R^{2}}$
D. $\frac{1}{\varepsilon_{0}} \frac{\sigma^{2}}{R^{2}}$

Answer: D
10. A point source of light is placed at a distance h below the surface of a large deep
late. What is the percentage of light energy
that escapes directly form the water surface is
μ of the water $=4 / 3$? (neglect partial reflection)
A. 50%
B. 25%
C. 20%
D. 17%

Answer: D

D Watch Video Solution

11. An ideal gas expands isothermally from
volume V_{1} to V_{2} and is then compressed to original volume V_{1} adiabatically. Initialy pressure is P_{1} and final pressure is P_{3}. The total work done is W. Then

$$
\text { A. } p_{3}>p_{1}, W>0
$$

$$
\text { B. } p_{3}<p_{1}, W<0
$$

$$
\begin{aligned}
& \text { C. } p_{3}>p_{1}, W<0 \\
& \text { D. } p_{3}=p_{1}, W=0
\end{aligned}
$$

Answer: C

D Watch Video Solution

12. One end of a copper rod of uniform cross
section and length 1.5 m is kept in contact
with ice and the other end with water at
$100^{\circ} \mathrm{C}$. At what point along its length should
a temperature of $200^{\circ} \mathrm{C}$ be maintained so
that in the steady state, the mass of ice melting be equal to that of the steam produced in same interval of time. Assume that the whole system is insulated from surroundings:
$\left[L_{\text {ice }}=80 \mathrm{cal} / \mathrm{g}, L_{\text {steam }}=540 \mathrm{cal} / \mathrm{g}\right]$
A. 10.34 cm
B. 16.48 cm
C. 21.68 cm
D. 27.87 cm
13. A coil having N turns is would tightly in the
form of a spiral with inner and outer radii a and b respectively. When a current I passes
through the coil, the magnetic field at the centre is.
A. $\frac{\mu_{0} N I}{b}$
B. $\frac{\mu_{0} N I}{a}$
C. $\frac{\mu_{0} N I}{2(b-a)} \ln \left(\frac{b}{a}\right)$

$$
\text { D. } \frac{\mu_{0} N I}{(b-a)} \ln \left(\frac{b}{a}\right)
$$

Answer: C

D Watch Video Solution

14. A thin uniform disc (see figure) of mass M
has outer radius 4 R and inner radius 3 R . The
work required to take a unit mass for point P
on its axis to infinity is

A. $\frac{2 G M}{7 R}(4 \sqrt{2}-5)$
B. $-\frac{2 G M}{7 R}(4 \sqrt{2}-5)$
c. $\frac{G M}{4 R}$
D. $\frac{2 G M}{5 R}(\sqrt{2}-1)$

Answer: A

- Watch Video Solution

15. Two uniformaly charged nonconducting spheres, each of radius R ,are fixed in a gravity free space as shwon in the figure. If an electron is released at rest from the point A, then its speed just before striking the other sphere is [mass of electron $=m_{e}$]

A. $\sqrt{\frac{2 Q_{e}}{9 \pi \varepsilon_{0} m_{e} R}}$
B. $\sqrt{\frac{8 Q e}{9 \pi \varepsilon_{0} m_{e} R}}$
C. $\sqrt{\frac{16 Q e}{9 \pi \varepsilon_{0} m_{e} R}}$
D. $\sqrt{\frac{4 Q e}{9 \pi \varepsilon_{0} m_{e} R}}$

Answer: B

- Watch Video Solution

16. The binding energy per nucleon of deuterium and helium nuclei are 1.1 MeV and
7.0 MeV respectively. When two deuterium
nuclei fuse to form a helium nucleus the energy released in the fusion is
A. 2.2 MeV
B. 23.6 MeV
C. 28.0 MeV
D. 30.2 MeV

Answer: B
(Watch Video Solution
17. A closed tube filled with water is rotating uniformly in a horizontal plane about the axis

OO as shown in the figure. The manometers A and B which are fixed on the tube at distances
r_{1} and r_{2}, indicate pressures P_{1} and P_{2}
respectively. The angular velocity (ω) of the
tube is

Answer: 1

D Watch Video Solution

18. The velocity - time graph of a particle of
mass 10 kg is shown in the figure. The net work done on the particle in the first two seconds

of the motion is

A. $-9300 J$
B. 12000 J
C. -4500 J
D. $-12000 J$
19. The maximum and the minimum equivalent
resistance obtained by combining n identical
resistors of resistance R , are $R_{\text {max }}$ and $R_{\text {min }}$ respectively. The ratio $\frac{R_{\max }}{R_{\min }}$ is equal to
A. n
B. n^{2}
C. $n^{2}-1$
D. n^{3}

Answer: B

- Watch Video Solution

20. A simple pendulum has time period T_{1} The point of suspension is now moved upward according to the relation
$y=k t^{2}\left(k=1 m / s^{2}\right)$ where y is vertical displacement, the time period now becomes
T_{2}. The ratio of $\left(\frac{T_{1}}{T_{2}}\right)^{2}$ is : $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

$$
\text { A. } \frac{4}{5}
$$

B. $\frac{6}{5}$
C. $\frac{5}{60}$
D. 1

Answer: B

D Watch Video Solution

21. What is the energy stored in the capacitor between terminals a and b of the network shown in the figure ? (Capacitance of each
capacitance $C=1 \mu F$)

- Watch Video Solution

22. A solid sphere made out of metal having a bulk modulus of $2 \times 10^{11} \mathrm{Mn}^{-2}$ is charged uniformly to a surface charge density
$\sigma=\sqrt{\alpha \varepsilon_{0}} C m^{-2}$, where ε_{0} is the permittivity of free space and α (magnitude $=1$) is a positive constant of appropriate dimensions. If the volume strain produced in the sphere after charging is $x \times 10^{-11}$ then the value of x is

D Watch Video Solution

23. The toy-top (initially at rest) shown in the
figure, has a moment of inertia
$4 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{2}$ and it is free to rotate about
the stationary axis AA^{\prime}. The string wrapped around the peg of the toy-top is pulled outwards without letting it slip and simultaneously maintaining a constant tension of 5.625 N . If ω is the angular speed (in $\operatorname{rad} \mathrm{s}^{-1}$) of the top after 80 cm of string has been pulled of the peg, then mark your answer as $\frac{\omega}{100}$.
24. An open pipe is suddenly closed at one end with the result that the frequency of third harmonic of the closed pipe is found to be higher by 100 Hz then the fundamental frequency of the open pipe. The fundamental frequency of the open pipe is
25. The figure below shown a block of mass 15
kg , kept on a rough inclined plane of angle 30° and coefficient of static friction equal to
0.5. It is being acted upon by two forces. What
should be the minimum value of P (in N) so
that the block doesn't slip downwards ?
$\left[\right.$ Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$ and $\left.\sqrt{3}=1.7\right]$
Itbr.
