đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 7

Physics Single Choice

1. Point out the correct set of diamagnetic substances
A. aluminium, sodium calcium and oxygen
B. bismuth, copper, lead and silicon
C. cobalt, nickel, gadolinium and aluminium
D. silver, niobium, magnesium and calcium

Answer: B

- Watch Video Solution

2. An ac source of 50 V (r.m.s value) is connected across a series R - C circuit. If the
r.m.s voltage across the resistor is 40 V , then
the r.m.s voltage across the capacitor is
A. 10 V
B. 20 V
C. 30 V
D. 40 V

Answer: C
(Watch Video Solution
3. A conducting ring of radius r and resistance
R is placed in region of uniform time varying magnetic field B which is perpendicular to the plane of the ring. It the magnetic field is changing at a rate α, then the current induced in the ring is

> A. $\frac{\pi r^{2} \alpha}{2 R}$
> B. $\frac{2 \pi r \alpha}{R}$
C. $\frac{\pi r \alpha}{R}$
D. $\frac{\pi r^{2} \alpha}{R}$

Answer: D

D Watch Video Solution

4. A conducting liquid bubble of radius a and
thickness $t(t \ll a)$ is charged to potential
V. If the bubble collapses to a droplet, find the potential on the droplet.
A. $V_{\text {droplet }}=V\left[\frac{a}{3 t}\right]^{\frac{1}{3}}$
B. $V_{\mathrm{droplet}}=V\left[\frac{a}{t}\right]^{\frac{1}{3}}$
C. $V_{\text {droplet }}=V\left[\frac{3 a}{t}\right]^{\frac{1}{3}}$
D. $V_{\text {droplet }}=V\left[\frac{3 a}{4 t}\right]^{\frac{1}{3}}$

Answer: A

D Watch Video Solution

5. Which of the following set of characteristics
of a material is suitable for using it as a dielectric in a capacitor?
A. large dielectirc constant and high
dielectric strength
B. large dielectric constant and low dielectric strength
C.small dielectric constant and high
dielectric strength
D. small dielectric constant and low
dielectric strength

Answer: A

- Watch Video Solution

6. An insulated container containing
monoatomic gas of molar mass s is moving
with a velocity v_{0}. If the container is suddenly
stopped, find the change in temperature.

$$
\begin{aligned}
& \text { A. } \frac{M_{0} v^{2}}{2 R} \\
& \text { B. } \frac{M_{0} v^{2}}{3 R} \\
& \text { C. } \frac{2 M_{0} v^{2}}{3 R} \\
& \text { D. } \frac{3 M_{0} v^{2}}{2 R}
\end{aligned}
$$

Answer: B

7. A charged particle with charge q enters a region of constant, uniform and mututally orthogonal fields \vec{E} and \vec{B} with a velocity \vec{v} perpendicular to both \vec{E} and \vec{B}, and comes out without any change in magnitude or direction of \vec{v}. Then

$$
\begin{aligned}
& \text { А. } \vec{v}=\frac{\vec{B} \times \vec{E}}{E^{2}} \\
& \text { в. } \vec{v}=\frac{\vec{E} \times \vec{B}}{B^{2}} \\
& \text { С. } \vec{v}=\frac{\vec{B} \times \vec{E}}{B^{2}}
\end{aligned}
$$

D. $\vec{v}=\frac{\vec{E} \times \vec{B}}{E^{2}}$

Answer: B

D Watch Video Solution

8. A force F is applied on a block of mass $\sqrt{3} \mathrm{~kg}$ which rests on a horizontal surface with a coefficient of friction $\frac{1}{2 \sqrt{3}}$. The maximum value of F for which the block doesn't move, is
$\left[\right.$ Take $\left.g=10 m s^{-2}\right]$

A. 20 N
B. 10 N
C. 15 N
D. 25 N

Answer: A
9. Two simple pendulums of length 5 m and 20 m are given small displacements in the same direction at the same time. The minimum number of oscillations, the shorter pendulum has completed, when the phase difference between them become zero again, is
A. 3
B. 4
C. 2

D. 5

Answer: C

D Watch Video Solution

10. The energy of a photon is equal to the
kinetic energy of a proton. The energy of the photon is E. Let λ_{1} be the de-Broglie wavelength of the proton and λ_{2} be the wavelength of the photon. The ratio $\frac{\lambda_{1}}{\lambda_{2}}$ is proportional to
A. E^{0}
B. $E^{1 / 2}$
C. E^{-1}
D. E^{-2}

Answer: B

D Watch Video Solution

11. An object weights m_{1} in a liquid of density
d_{1} and that in liquid of density d_{2} is m_{2}. The density of the object is

> A. $d=\frac{m_{2} d_{2}-m_{1} d_{1}}{m_{2}-m_{1}}$
> B. $d=\frac{m_{1} d_{1}-m_{2} d_{2}}{m_{2}-m_{1}}$
> C. $d=\frac{m_{2} d_{1}-m_{1} d_{2}}{m_{1}-m_{2}}$
> D. $d=\frac{m_{1} d_{2}-m_{2} d_{1}}{m_{1}-m_{2}}$

Answer: D

D Watch Video Solution

12. The length of a telescope, for which it is known that it has an objective lens of focal
length 144 cm and an eye piece of focal length

6 cm is

A. 1.5 m
B. 1.44 m
C. 1.38 m
D. 1.56 m

Answer: A
(Watch Video Solution
13. The surface tension and vapour pressure of water at $20^{\circ} \mathrm{C}$ is $7.28 \times 10^{-2} \mathrm{Nm}^{-1}$ and 2.33×10^{3} Pa respectively. The radius of the smallest spherical water droplet which can form without evaporating at $25^{\circ} \mathrm{C}$ is

$$
\begin{aligned}
& \text { A. } 1.25 \times 10^{-5} \mathrm{~m} \\
& \text { B. } 6.25 \times 10^{-5} \mathrm{~m} \\
& \text { C. } 4.3 \times 10^{-5} \mathrm{~m} \\
& \text { D. } 3.4 \times 10^{-5} \mathrm{~m}
\end{aligned}
$$

- Watch Video Solution

14. The figure shows two regions of uniform magnetic field of strengths $2 B$ and $2 B$. A charged particle of mass m and charge q enters the region of the magnetic field with a velocity $v=\frac{q B w}{m}$, where w is the width of each region of the magnetic field. The time taken by the particle to come out of the
region of the magnetic field is

A. $\frac{4 \pi m}{q B}$
B. $\frac{2 \pi m}{q B}$
C. $\frac{\pi m}{2 q B}$
D. $\frac{\pi m}{q B}$

Answer: D

- Watch Video Solution

15. A circular platform is free to rotate in a horizontal plane about a vertical axis passing through its centre. A tortoise is sitting at the edge of the platform. Now the platform is given an angular velocity ω_{0}. When the tortoise move along a chord of the platform with a constant velocity (with respect to the platform),

Answer: C

D Watch Video Solution

16. Four identical solid spheres each of mass
M and radius R are fixed at four corners of a
light square frame of side length $4 R$ such that centres of spheres coincides with corners of square, moment of inertia of 4 spheres about an axis passing through any side of square is

> A. $\frac{21 M R^{2}}{5}$
> B. $\frac{42 M R^{2}}{5}$
> C. $\frac{84 M R^{2}}{5}$
> D. $\frac{168 M R^{2}}{5}$

Answer: D

D Watch Video Solution

17. If resistivity of pure silicon is 3000Ω meter,
and the electron and hole mobilities are
$0.12 m^{2} V^{-1} s^{-1}$
and
$0.045 m^{2} V^{-1} s^{-1}$
respectively, determine the resistivity of a specimen of the material when 10^{19} atoms of phosphorous are added per m^{3} are also added. Given charge on electron $=1.6 \times 10^{-19} C$.
A. 2.21Ω
B. 3.21Ω
C. 4.21Ω
D. 5.21Ω

Answer: D

- Watch Video Solution

18. The current through the battery shown in the circuit is

A. 1.33 A
B. 1.71 A
C. 2.00 A
D. 2.31 A

Answer: C

- Watch Video Solution

19. Two spheres A and B are made of the same
material and have the same radius. Sphere A is
hollow and sphere B is solid. Both the spheres
are heated to the same temperature. Which of the following is correct ?
A. A expands more than B
B. A expands less than B
C. both the spheres expand equally
D. data is insufficient

Answer: C
20. A real image of an object is formed at a distance of 20 cm from a lens. On putting another lens in contact with it, the image is shifted 10 cm towards the combination, Determine the power of the second lens.
A. 5 D
B. 2.5 D
C. 10 D
D. 2 D

Answer: A

D Watch Video Solution

Physics Subjective Numerical

1. Two uniform solid spheres made of copper
have radii 15 cm and 20 cm respectively. Both
of them are heated to a temperature of $70^{\circ} \mathrm{C}$
and then placed in a region of ambient
temperature equal to $45^{\circ} \mathrm{C}$. What will be the ratio of the initial rates of cooling of both the spheres?

D Watch Video Solution

2. A physical quantity A is related to four observable a,b,c and d as follows, $A=\frac{a^{2} b^{3}}{d \sqrt{c}}$, the percentage errors of measurement is a, b, c and d,are $1 \%, 3 \%, 2 \%$ and 1% respectively.

What is the percentage error in the quantity A?

- Watch Video Solution

3. A string 25 cm long fixed at both ends and having a mass of $2.5 g$ is under tension. A pipe closed from one end is 40 cm long. When the string is set vibrating in its first overtone and the air in the pipe in its fundamental frequency, 8 beats per second are heard. If is observed that decreasing the tension in the string decreases the beat frequency. If the speed of sound in air is $320 \mathrm{~m} / \mathrm{s}$. Find tension in the string.

- Watch Video Solution

cube has 1Ω resistance and it is known that
the effective resistance between A and B is $\frac{5}{9} \Omega$. Now, if the resistor between A and B is removed, then find the new effective
resistance (in Ω) between the same two points.

D Watch Video Solution

5. Two particles are projected vertically upwards from the surface of the earth with velocities $\quad v_{1}=\sqrt{\frac{2 g R}{3}}$ and $v_{2}=\sqrt{\frac{4 g R}{3}}$ respectively. If the maximum heights attained by the two particles are h_{1} and h_{2} respectively, then calculate the ratio $\frac{h_{1}}{h_{2}}$.
\square
