©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 9

Physics

1. When photones of energy 4.0 eV fall on the
surface of a metal A, the ejected
photoelectrons have maximum kinetic energy
T_{A} (in eV) and a de-Broglie wavelength λ_{A}.
When the same photons fall on the surface of another metal B , the maximum kinetic energy of ejected photoelectrons is
$T_{B}=T_{A}-1.5 e V$. If the de-Broglie
wavelength of these photoelectrons is
$\lambda_{B}=2 \lambda_{A}$, then the work function of metal B is
A. 2 eV
B. 3 eV
C. 2.5 eV

D. 3.5 eV

Answer: D

D Watch Video Solution

2. Two particles having de-Broglie wavelengths
λ_{1} and λ_{2}, while moving along mutually perpendicular directions, undergo perfectly inelastic collision. The de-Broglie wavelength λ , of the final particle is

$$
\begin{aligned}
& \text { A. } \lambda=\frac{\lambda_{1} \lambda_{2}}{\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}} \\
& \text { B. } \lambda=\sqrt{\lambda_{1} \lambda_{2}} \\
& \text { C. } \lambda=\sqrt{\lambda_{1}+\lambda_{2}} \\
& \text { D. } \lambda=\frac{\lambda_{1}+\lambda_{2}}{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

3. An electron of charge e is moving in a circular orbit of radius r around a nucleus, at a
frequency v. The magnetic moment associated with the orbital motion of the electron is
A. $2 \pi v e r^{2}$
B. $\frac{\pi v r^{2}}{2}$
C. $\pi e v r^{2}$
D. $\frac{\pi v r^{2}}{4}$

Answer: C
(Watch Video Solution
4. A circuit consists of three identical lamps connected to a battery as shown in the figure.

When the switch S is closed then the intensities of lamps A and B

A. will increase by eight times
B. will decrease by two times
C. will increase by more than two times

D. will remain the same

Answer: C

D Watch Video Solution

5. The volume of air increases by 5% in its
adiabatic expansion. The precentage decrease
in its pressure will be
A. 0.05
B. 0.06

C. 0.07

D. 0.08

Answer: C

D Watch Video Solution

6. A parallel plate capacitor of capacitance $1 \mu F$ has a charge of $+2 \mu C$ on one of the plates and a charge of $+4 \mu C$ on the other.

The potential difference developed across the capacitor is
A. 5 V
B. 2 V
C. 3V
D. 1V

Answer: D

- Watch Video Solution

7. The electric field intensity at all points in space is given by $\vec{E}=\sqrt{3} \hat{i}-\hat{j} V / m$. The
nature of equipotential lines is $x-y$ plane is

given by

A.

C.

D.

Answer: C

D Watch Video Solution

8. For an infinitely long solid cylinder of radius
R having a uniform density, the gravitational
field at a distance r_{1} is E_{1} and at a distance r_{2} is E_{2}, then
A. $E_{1}<E_{2}$ for $r_{1}<r_{2}<R$
B. $E_{1}>E_{2}$ for $R<r_{1}<r_{2}$
C. both 1 and 2

D. none of the above

Answer: C

D Watch Video Solution

9. A particle (mass = m and charge = q) is moving in a region in which there exists a uniform electric field $E \vec{i}$ and a uniform magnetic field $B \hat{k}$. At $\mathrm{t}=0$, the particle is at (
$0, \mathrm{a})$ and is moving with $v \hat{i}$. After some time, the particle is located at (2a, 0) and has a
velocity $-2 v \hat{j}$, then which of the following is

true ?

A. $E=\frac{3}{2}\left(\frac{m v^{2}}{q a}\right)$
B. at the initial moment, the rate of work
done by electric field is $\frac{3}{4}\left(\frac{m v^{3}}{a}\right)$
C. $E=\frac{3}{8}\left(\frac{m v^{2}}{q a}\right)$
D. at the initial moment, the rate of work
done by electric field is $\frac{3}{16}\left(\frac{m v^{3}}{a}\right)$

Answer: B
10. If the coefficient of friction between A and
B is μ, the maximum acceleration of the wedge A for which B will remain at rest with respect to the wedge is

A. μg
B. $g\left(\frac{1+\mu}{1-\mu}\right)$
C. $\frac{g}{\mu}$
D. $g\left(\frac{1-\mu}{1+\mu}\right)$

Answer: B

D Watch Video Solution

11. Two large insulating plates having surface charge densities $+\sigma$ and $-\sigma$ are fixed some distance apart in a gravity -free region and two ideal insulating springs of force constant
k are connected to the plates as shown in the
figure. A particle of charge q and mass m which is attached to the junction of the spring is released from rest, then the partice will cross its equilibrium position with a speed $\left|\begin{array}{|ccc|}\hline-00000 & \mathrm{q} & \mathrm{q} \\ \mathrm{q} & \mathrm{k} \\ 00000\end{array}\right|_{-}^{\sigma}$

$$
\text { A. } v=\frac{q \sigma}{\varepsilon_{0}} \sqrt{\frac{k}{m}}
$$

B. $v=\frac{q \sigma}{\varepsilon_{0}} \sqrt{\frac{1}{2 m k}}$
C. $v=\frac{q \sigma}{\varepsilon_{0}} \sqrt{\frac{2 k}{m}}$
D. $v=\frac{q \sigma}{2 \varepsilon_{0}} \sqrt{\frac{k}{m}}$

Answer: B

D Watch Video Solution

12. Photo-electrons are produced from a metal surface using a radiation of wavelength $6561 \AA$
. These photo-electrons, when made to enter a uniform magnetic field of intensity $3 \times 10^{-4} \mathrm{~T}$,
move along different circular paths with a maximum radius of 10 mm , then the work function of the metal is close to
A. 3.1eV
B. 0.1 eV
C. 2.1 eV
D. 1.1 eV

Answer: D

D Watch Video Solution
13. The rate of water gushing out of a pipe of radius 5 cm is $100 \mathrm{Lmin}^{-1}$. The Reynolds number for the flow is of the orderof [density of water $=1000 \mathrm{kgm}^{-3}$,coefficient of viscosity of water $=1 \mathrm{~m}$ Pa s $]$
A. 10^{6}
B. 10^{4}
C. 10^{3}
D. 10^{2}

Watch Video Solution

14. An object is placed at a distance of 40 cm from a convex lens of focal length 20 cm . On the far side of the lens, a concave mirror of focal length 10 cm is placed such that the distance of the object from the concave mirror is 100 cm . Then the final image which is formed after refraction from the lens, reflection from the mirror and again refraction from the lens, will be
A. at a distance of 40 cm from the lens and of the same size of the object
B. at a distance of 20 cm from the lens and of the same size of the object
C. at a distance of 20 cm from the lens
D. at a distance of 40 cm from the lens and
of half the size of the object

Answer: A
15. A solid cylinder is given a velocity v_{0} and an angular speed ω_{0} in the anticlockwise direction and then it is placed gently on a very long rough plank (initially at rest) as shown in the figure. Then, choose the incorrect statement :

A. the friction force on the disc is in the backward direction till pure rolling starts
B. the friction force between the disc and
the plank is kinetic in nature till pure rolling starts
C. the total momentum of system (disc and plank) is conserved
D. the angular momentum of the disc
about any point on the horizontal

Answer: D

D Watch Video Solution

16. In the figure, the reverse breakdown
voltage of a Zener diode is 5.6 V , then the current I_{Z} through the diode is

A. 17 mA
B. 15 mA
C. 10 mA
D. 7 mA

Answer: C

D Watch Video Solution

17. For an ideal gas, the specific heat capacity during an isentropic process is always
A. zero
B. infinite
C. positive
D. negative

Answer: A

D Watch Video Solution
18. Time for 20 oscillations of a pendulum is measured as
$t_{1}=39.6 s, t_{2}=39.9 s, t_{3}=39.5 . \quad$ What is
the precision in the measurements? What is
the accuracy of the measurement ?
A. $\pm 0.2 s$
B. $\pm 0.3 s$
C. $\pm 0.5 s$
D. $\pm 0.4 s$

Answer: A

D Watch Video Solution
19. A ray of light passes through four transparent media with refractive indices μ_{1}, μ_{2}
, μ_{3} and μ_{4} as shown in the figure. The surfaces of all media are parallel. If the emergent ray
$C D$ is parallel to the incident ray $A B$, we must have

A. $\mu_{1}=\mu_{2}$

$$
\begin{aligned}
& \text { B. } \mu_{2}=\mu_{3} \\
& \text { C. } \mu_{3}=\mu_{4} \\
& \text { D. } \mu_{4}=\mu_{10}
\end{aligned}
$$

Answer: D

- Watch Video Solution

20. A composite wire of length 2 L is made by joining two different wires A and B having the same length, made of the same material but of different radii r and $2 r$ respectively. The
composite wire is vibrating at such a frequency, that the junction of the two wires
form a node. If the number of antinodes in the wire A is p and that in the wire B is q, then the ratio $p: q$ is

A. $1: 2$
B. $3: 5$
C. 1: 4

D. $4: 9$

Answer: A

D Watch Video Solution

21. In Wheatstone bridge, four resistors of resistances $15 \Omega, 12 \Omega, 4 \Omega$ and 10Ω
respectively, are connected in cyclic order. The resistance (in Ω) that is to be connected in parallel with the resistance of 10Ω to balance the network is

Watch Video Solution

22. There is crater of depth $R / 100$ on the surface of the moon (raduis R). A projectile is
fired vertically upwards from the crater with a velocity, which is equal to the escape velocity v from the surface of the moon. The maximum height attained by the projectile, is :

- Watch Video Solution

23. A steady current I goes through a wire loop $P Q R$ having shape of a right angle triangle
with
$P Q=3 x, P R=4 x$ and $Q R=5 x$. If the magnitude of the magnetic field at P due to this loop is $k\left(\frac{\mu_{0} I}{48 \pi x}\right)$, find the value of K.

D Watch Video Solution

24. A cube of aluminium of side 6 cm is subjected to a tangential force such that the
top face is shears through 0.012 cm relative to
the bottom face. The tangential force is $k \times 10^{10}$ dyne. What is the value of k ? [Shear modulus of the material is $\eta=2 \times 10^{11}$ dyne cm^{-2}]

- Watch Video Solution

25. The ratio of the nuclear radius, of an atom with mass number A and $\frac{4}{2} \mathrm{He}$ is $(14)^{1 / 3}$. What is the value of A ?
\square
