©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NEET MOCK TEST 06

Physics

1. For an object thrown at 45° to the
horizontal, the maximum height H and
horizontal range R are related as
A. $R=16 H$
B. $R=8 H$
C. $R=4 H$
D. $R=2 H$

Answer: C

D Watch Video Solution

2. Three idential spherical shells each of mass m and radius r are placed as shown in Fig.

Consider an axis XX' which is touching the two
shells and passing through diameter of third
shell. Moment of Inertia of the system
consisting of these three spherical shells about XX ' as axis is :

A. $\frac{11}{5} m r^{2}$
B. $3 m r^{2}$
C. $\frac{16}{5} m r^{2}$
D. $4 m r^{2}$

Answer: D

D Watch Video Solution

3. Two coils of self-inductance $2 m H$ and $8 m H$ are placed so close together that the effective
flux in one coil is completely linked with the
other. The mutual inductance between these

coil is

A. 16 mH
B. 10 mH
C. 6 mH
D. 4 mH

Answer: D
(Watch Video Solution
4. 22 g of carbon dioxide at $27^{\circ} \mathrm{C}$ is mixed in a closed container with 16 g of oxygen at $37^{\circ} \mathrm{C}$.

If both gases are considered as ideal gases, then the temperature of the mixture is
A. $24.2^{\circ} \mathrm{C}$
B. $28.5^{\circ} \mathrm{C}$
C. $32^{\circ} \mathrm{C}$
D. $33.5^{\circ} \mathrm{C}$

Answer: C

5. If the length of $\operatorname{rod} A$ is $3.25 \pm 0.01 \mathrm{~cm}$ and
that of B is $4.19 \pm 0.01 \mathrm{~cm}$ then the $\operatorname{rod} B$ is
longer than rod A by
A. $(0.94 \pm 0.00) c m$
B. $(0.94 \pm 0.01) \mathrm{cm}$
C. $(0.94 \pm 0.02) c m$
D. $(0.94 \pm 0.005) \mathrm{cm}$

Answer: C
6. The luminosity of the Rigel star is 17000 times that of the sun. Assume both to be perfectly back bodies. If the surface temperature of the sun 6000 K , then the temperature of the star is around $\left(\right.$ Take $\left.17000^{1 / 4}=11.4\right)$
A. 68400 K
B. 58400 K
C. 38600 K

D. 32600 K

Answer: A

D Watch Video Solution

7. Two slits S_{1} and S_{2} illuminated by a white
light source give a white central maxima. A transparent sheet of refractive index 1.25 and
thickness t_{1} is placed in front of S_{1}. Another transparent sheet of refractive index 1.50 and thickness t_{2} is placed in front of S_{2}. If central
maxima is not effected, then ratio of the thickness of the two sheets will be :
A. $1: 2$
B. $2: 1$
C. 1: 4
D. $4: 1$

Answer: B
(Watch Video Solution
8. De - Broglie wavelength of an electron accelerated by a voltage of 50 V is close to $\left(|e|=1.6 \times 10^{-19} C, m_{e}=9.1 \times 10^{-31}\right)$
A. $0.5 \AA$
B. $1.2 \AA$
C. $1.7 \AA$
D. $2.4 \AA$

Answer: C

D Watch Video Solution
9. In P-type semiconductor the majority and minorty charge carriers are respectively
A. proton and electrons
B. electron and protons
C. electrons and holes
D. holes and electrons

Answer: D

- Watch Video Solution

10. Two long parallel conductors are placed at right angles to a metre scale at the 2 cm and 6 cm marks, as shown in the figure

They carry currents of $1 A$ and $3 A$ respectively.
They will produce zero magnetic field at the (ignore the earth's magnetic field)
A. 5 cm mark
B. 3 cm mark

C. 1 cm mark

D. 8 cm mark

Answer: B

D Watch Video Solution

11. The amplitude of two waves are in ratio 5 :
12. If all other conditions for the two waves are
same, then what is the ratio of their energy densities
A. $5: 2$
B. 5: 4
C. $4: 5$
D. $25: 4$

Answer: D

D Watch Video Solution
12. The potential difference between A and B in
the following figure is
A. 32 V
B. 48 V
C. 24 V
D. 14 V

Answer: B
13. A particle undergoes uniform circular motion. About which point on the plane of the circle, will the angular momentum of the particle remain conserved?
A. Centre of the circle
B. On the circumference of the circle
C. Inside the circle
D. Outside the circle

Answer: A
14. Charges $Q, 2 Q$, and $-Q$ are given to three concentric conducting sphereical shells A, B and C respectively as shown in figure. The ratio of charge on the inner and outer surface

A. $\frac{3}{4}$
B. $-\frac{3}{4}$
C. $\frac{3}{2}$
D. $-\frac{3}{2}$

Answer: D

D Watch Video Solution

15. A container with insulating walls is divided
into two equal parts by a partition fitted with
a valve. One part is filled with an ideal gas at a pressure P and temperature T , whereas the other part is completely evacuated. If the
valve is suddenly opened, the pressure and temperature of the gas will be
A. $\frac{p}{2}, T$
B. $\frac{p}{2}, \frac{T}{2}$
C. p, T
D. $p, \frac{T}{2}$

Answer: A

D Watch Video Solution

16. A man running at a speed of $5 \mathrm{~km} / \mathrm{h}$ finds
that the rain is falling vertically. When the stops running, the finds that the rain is falling
at an angle of 60° with the horizontal. The velocity of rain with respect to running man is
A. $\frac{5}{\sqrt{3}} \mathrm{~km} / \mathrm{h}$
B. $\frac{5 \sqrt{3}}{2} \mathrm{~km} / \mathrm{h}$
C. $\frac{4 \sqrt{3}}{5} \mathrm{~km} / \mathrm{h}$
D. $5 \sqrt{3} \mathrm{~km} / \mathrm{h}$

Answer: D

D Watch Video Solution

17. The length of a wire of a potentiometer is

100 cm , and the e.m.f. of its standard cell is E
volt. It is employed to measure the e.m.f. of a battery whose internal resistance is 0.5Ω. If the balance point is obtained at $\mathrm{I}=30 \mathrm{~cm}$ from the positive end, the e.m.f. of the battery is .
where i is the current in the potentiometer wire.
A. 0.2 E
B. 0.3 E
C. 0.4 E

D. 0.5 E

Answer: B

D Watch Video Solution

18. Uranium- 238 decays to thorium- 234 with
half-life $5 \times 10^{9} y r$. The resulting nucleus is in
the excited state and hence further emits γ rays to come to the ground state. It emits 20γ rays per second. The emission rate will drop to
5γ-rays per second in
A. $.25 \times 10^{9} y r$
B. $10^{10} y r$
C. $10^{-8} y r$
D. $1.25 \times 10^{-9} s$

Answer: B

D Watch Video Solution

19. A circular coil of 100 turns and effective diameter 20 cm carries a current of $0.5 A$. It is to be turned in a magnetic field of $B=2.0 T$
from a position in which the normal to the plane of the coil makes an angle θ equals to zero to one in which θ equals to 180°. The work required in this process is
A. πJ
B. $2 \pi J$
C. $4 \pi J$
D. $8 \pi J$

Answer: B
20. A mixture consists of two radioactive materials A_{1} and A_{2} with half-lives of 20 s and

10 s respectively. Initially the mixture has 40 g
of A_{1} of 160 g of A_{2}. After what time of amount of the two in the mixture will become equal ?
A. 60 s
B. 80 s
C. 20 s
D. 40 s

Answer: D

- Watch Video Solution

21. In Young's double - slit experiment, d = 0.1
$\mathrm{mm}, \mathrm{D}=20 \mathrm{~cm}$, and $\lambda=5460 \AA$, the angular
position for first dark fringe will be
A. 0.08°
B. 0.24°
C. 0.32°
D. 0.16°

Answer: D

D Watch Video Solution

22. Positively charged particles are projected into a magnetic field. If the direction of the magnetic field is along the direction of motion of the charged particles, the particles get
A. Accelerated
B. Decelerated
C. Deflected

D. No change in velocity

Answer: D

D Watch Video Solution

23. To send 10% of the main current through
a moving coil galvanometer of resistance 9Ω,

shunt S required is

A. 81Ω
B. 1Ω
C. 10Ω
D. 9Ω

Answer: B
24. A steel ball strikes a fixed smooth steel plate placed on a horizontal surface atan angle θ with the vertical. If the coefficient of restitution is e, the angle at which the rebound will take place is:
A. θ
B. $\tan ^{-1}\left[\frac{\tan \theta}{e}\right]$
C. $e \tan \theta$
D. $\tan ^{-1}\left[\frac{e}{\tan \theta}\right]$

Answer: B

- Watch Video Solution

25. A coil of circular cross - section having 1000 turns and $4 \mathrm{~cm}^{2}$ face area is placed with its axis parallel to a magnetic field which decreases by $10^{-2} \mathrm{~Wb} \mathrm{~m}^{-2}$ in 0.01 s. the e.m.f induced in the coil is :
A. 0.4 mV
B. 4 mV

C. 200 mV

D. 400 mV

Answer: D

D Watch Video Solution

26. The mirror in the below case is

A. Convex
B. Concave
C. Plane
D. None of these

Answer: C

D Watch Video Solution

27. A stone is projected vertically upward to
reach maximum height h. The ratio of its
kinetic energy to its potential energy at a height $\frac{4}{5} h$, will be
A. $5: 4$
B. $4: 5$
C. 1: 4
D. $4: 1$

Answer: C
(Watch Video Solution
28. A force given by $\vec{F}=f_{x} \hat{i}+f_{y} \hat{j}+f_{z} \hat{k}$ acts on a particle which moves from (a, b, c) to (d, e, f). The work done by the force F is: (Here A_{1}, A_{2}, A_{3} are magntitude of area bounded)

A. $A_{1}+A_{2}+A_{3}$
B. $A_{1}-A_{2}-A_{3}$
C. $-A_{1}+A_{2}-A_{3}$
D. $A_{1}-A_{2}+A_{3}$

Answer: B

- Watch Video Solution

29. Two identical square rods of metal are welded end to end as shown in figure (i), 20 calories of heat flows through it in 4 minutes.

If the rods are welded as shown in figure (ii),
the same amount of heat will flow through the
rods in

(i)

(ii)
A. 16 min
B. 12 min
C. 1 min
D. 4 min

Answer: C

- Watch Video Solution

30. Identify the gate and match A, B, Y in the bracket to check.

A. $O R(A=1, B=1, Y=0)$
B. $X O R(A=1, B=1, Y=0)$
C. $\operatorname{NOT}(A=1, B=1, Y=0)$
D. $A N D(A=1, B=1, Y=1)$

Answer: D

- Watch Video Solution

31. A particle of mass m is projected upwards
with velocity $v=\frac{v_{e}}{2}$, where v_{e} is the escape velocity then at the maximum height the potential energy of the particle is : (R is radius of earth and M is mass of earth)

$$
\begin{aligned}
& \text { A. } \frac{-G M m}{2 R} \\
& \text { B. } \frac{-G M m}{4 R} \\
& \text { C. } \frac{-3 G M m}{4 R} \\
& \text { D. } \frac{-2 G M m}{3 R}
\end{aligned}
$$

32. A particle moves in a circular path of radius
$0.5 m$ at a speed that uniformly increases. Find the angular acceleration of particle if its speed changes from $2.0 \mathrm{~m} / \mathrm{s}$ to $4.0 \mathrm{~m} / \mathrm{s}$ in 4.0 s
A. $1 \mathrm{rad} / \mathrm{s}^{2}$
B. $2 \mathrm{rad} / \mathrm{s}^{2}$
C. $4 \mathrm{rad} / \mathrm{s}^{2}$
D. $0 \mathrm{rad} / \mathrm{s}^{2}$

Answer: A

- Watch Video Solution

33. 1 g of water at $100^{\circ} \mathrm{C}$ is completely converted into steam at $100^{\circ} \mathrm{C} .1 \mathrm{~g}$ of steam occupies a volume of 1650cc. (Neglect the volume of 1 g of water at $100^{\circ} \mathrm{C}$. At the pressure of $10^{5} \mathrm{~N} / \mathrm{m}^{2}$, latent heat of steam is $540 \mathrm{cal} / \mathrm{g}$ (1 Calorie=4.2 joules). The increase in the internal energy in joules is
A. 2310
B. 2103
C. 1650
D. 2150

Answer: B

D Watch Video Solution

34. A simple pendulum consisting of a mass M attached to a string of length L is released
from rest at an angle α. A pin is located at a
distance l below the pivot point. When the pendulum swings down, the string hits the pin as shown in figure. The maximum angle θ which the string makes with the vertical after hitting the pin is

A. $\cos ^{-1}\left[\frac{L \cos \alpha+l}{L+l}\right]$
B. $\cos ^{-1}\left[\frac{L \cos \alpha-l}{L-l}\right]$

$$
\begin{aligned}
& \text { C. } \cos ^{-1}\left[\frac{L \cos \alpha+l}{L-l}\right] \\
& \text { D. } \cos ^{-1}\left[\frac{L \cos \alpha-l}{L+l}\right]
\end{aligned}
$$

Answer: B

D Watch Video Solution

35. The ends of a stretched wire of length L
are fixed at $x=0$ and $x=L$. In one experiment, the displacement of the wire is
$y_{1}=A \sin (\pi / L) \sin \omega t$ and energy is E_{1} and
in another experiment its displacement is
$y_{2}=A \sin (2 \pi x / L) \sin 2 \omega t$ and energy is E_{2}.

Then
A. $E_{2}=E_{1}$
B. $E_{2}=2 E_{1}$
C. $E_{2}=4 E_{1}$
D. $E_{2}=16 E_{1}$

Answer: C
(Watch Video Solution
36. $K_{\text {max }}$ (in eV) $=3$, and frequency of light (in

Hz) $=1 \times 10^{15}$ for a metal used as a cathode in a photoelectric experiment. The threshold frequency of light for the photoelectric emission from the metal is -

A. $1 \times 10^{14} \mathrm{~Hz}$
B. $1.5 \times 10^{14} \mathrm{~Hz}$
C. $2.1 \times 10^{14} \mathrm{~Hz}$
D. $2.7 \times 10^{14} \mathrm{~Hz}$

Answer: D

- Watch Video Solution

37. A capacitance of $2 \mu F$ is required in an electrical circuit across a potential difference of 1.0 kV A large number of $1 \mu F$ capacitors are available which can withstand a potential difference of not more than $300 v$.

The minimum number of capacitors required to achieve this is
A. 32
B. 2
C. 16
D. 24

Answer: A

- Watch Video Solution

38. A rocket of mass 4000 kg is set for vertical
firing. How much gas must be ejected per second so that the rocket may have initial upwards acceleration of magnitude $19.6 \mathrm{~m} / \mathrm{s}^{2}$
? [Exhaust speed of fuel $=980 \mathrm{~m} / \mathrm{s}$]
A. $240 \mathrm{kgs}^{-1}$
B. $60 \mathrm{kgs}^{-1}$
C. $120 \mathrm{kgs}^{-1}$
D. None

Answer: C

D Watch Video Solution

39.1 mole of a gas with $\gamma=7 / 5$ is mixed with

1 mole of a gas with $\gamma=5 / 3$, then the value of γ for the resulting mixture is
A. $\frac{7}{5}$
B. $\frac{2}{5}$
C. $\frac{24}{16}$
D. $\frac{12}{7}$

Answer: C

D Watch Video Solution

40. An electromagnetic wave fo frequency $1 \times 10^{14} \mathrm{~Hz}$ is propagating along z - axis. The amplitude of the electric field is $4 V / m$. If
$\varepsilon_{0}=8.8 \times 10^{-12} C^{2} / N-m^{2}, \quad$ then the average energy density of electric field will be

> A. $35.2 \times 10^{-12} \mathrm{~J} / \mathrm{m}^{3}$
> B. $35.2 \times 10^{-10} \mathrm{~J} / \mathrm{m}^{3}$
> C. $35.2 \times 10^{-11} \mathrm{~J} / \mathrm{m}^{3}$
> D. $35.2 \times 10^{-13} \mathrm{~J} / \mathrm{m}^{3}$

Answer: A

D Watch Video Solution

41. The algebraic sum of two co - initial vectors
is 16 units. Their vector sum is 8 units and the resultant of the vectors are perpendicular to
the smaller vector. Then magnitudes of the two vectors are -
A. 2 unit \& 14 unit
B. 4 unit \& 12 unit
C. 6 unit 10 unit
D. 8 unit \& 8 unit

- Watch Video Solution

42. In a Young's double slit experiment, slits are separated by 0.5 mm and the screen is placed 150 cm away. A beam of light consisting of two wavelengths, 650 nm and 520 nm , is used to obtain interference fringes on the screen. The least distance from the common central maximum to the point where the bright fringes due to both the wavelengths coincide is
A. 15.6 mm
B. 1.56 mm
C. 7.8 mm
D. 9.75 mm

Answer: C

D Watch Video Solution
43. The speed of a ball of radius 2 cm in a
viscous liquid is $20 \mathrm{~cm} / \mathrm{s}$. Then the speed of ball of radius 1 cm in the same liquid is
A. $5 \mathrm{cms}^{-1}$
B. $10 \mathrm{cms}^{-1}$
C. $40 \mathrm{cms}^{-1}$
D. $80 \mathrm{cms}^{-1}$

Answer: A

D Watch Video Solution
44. In a pond of water, a flame is held 2 m above the surface of the water. A fish is at depth of 4 m from the water surface.

Refractive index of water is $\frac{4}{3}$. The apparent height of the flame from the eyes of fish is -
A. 5.5 m
B. 6 m
C. $\frac{8}{3} m$
D. $\frac{20}{3} m$

Answer: D
(Watch Video Solution
45. A particle is projected with velocity v_{0} along x-axis. The deceleration on the particle is proportional to the square of the distance from the origin i.e. $a=-x^{2}$. The distance at which particle stops is -
A. $\sqrt{\frac{3 v_{0}}{2}}$
B. $\left(\frac{v_{0}^{2}}{3}\right)^{1 / 3}$
C. $\left(\frac{2 v_{0}^{2}}{3}\right)^{1 / 3}$
D. $\left(\frac{3 v_{0}^{2}}{2}\right)^{1 / 3}$

Answer: D

D Watch Video Solution

