©゙ doubtnut
 India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NEET MOCK TEST 07

Physics

1. Temperature of an ideal gas is 300 K . The change in temperature of the gas when its volume changes from V to 2 V in the process $\mathrm{p}=\mathrm{aV}$ (Here, a is a positive constant) is
A. 900 K
B. 1200 K
C. 600 K
D. 300 K

D Watch Video Solution

2. A short bar magnet of magnetic moment $0 \cdot 4 J T^{-1}$ is placed in a uniform magnetic field of $0 \cdot 16 T$. The magnet is in stable equilibrium when the potencial energy is
A. -0.064 J
B. zero
C. -0.082 J
D. 0.064 J

Answer: A

3. The dimension of coefficient of viscosity is:
A. $M L^{-1} T^{-2}$
B. $M L T^{-1}$
C. $M L^{-1} T^{-1}$
D. $M L^{-2} T^{-2}$

Answer: C

- Watch Video Solution

4. A square frame of side 10 cm and a long straight wire carrying current 1 A are in the plane of the paper. Starting from close to the wire, the frame moves towards the right with a constant speed of $10 \mathrm{~ms}^{-1}$ (sec figure). The e.m.f induced at the time the left arm of the frame is at $x=10 \mathrm{~cm}$
from the wire is

A. $0.75 \mu v$
B. $1 \mu v$
C. $2 \mu v$
D. $0.5 \mu v$

Answer: B

Watch Video Solution
5. A ball is projected at an angle 60° with the horizontal with speed 30 m / s. What will be the speed of the ball when it makes an angle 45° with the horizontal?
A. $30 \mathrm{~m} / \mathrm{s}$
B. $15 \sqrt{2} \mathrm{~m} / \mathrm{s}$
C. $\frac{15}{\sqrt{2}} m / s$
D. $30 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

6. A 100 W bulb B_{1}, and two $60 W$ bulbs B_{2} and B_{3} are connected to a 250 V source as shown in the figure. Now W_{1}, W_{2} and W_{3} are the output
powers of the bulbs B_{1}, B_{2} and B_{3} respectively. Then

A. $W_{1}>W_{2}=W_{3}$
B. $W_{1}>W_{2}>W_{3}$
C. $W_{1}<W_{2}=W_{3}$
D. $W_{1}<W_{2}<W_{3}$

Answer: D

- Watch Video Solution

7.

Figure. Shows the variation of force acting on a particle of mass 400 g executing simple harmonic motion. The frequency of oscillation of the particle is
A. $4 s^{-1}$
B. $(5 / 2 \pi) s^{-1}$
C. $(1 / 8 \pi) s^{-1}$
D. $(1 / 2 \pi) s^{-1}$

Answer: B

8. Water of volume 2 litre in a container is heated with a coil of 1 kW at $27^{\circ} \mathrm{C}$. The lid of the container is open and energy dissipates at rate of $160 \mathrm{~J} / \mathrm{s}$. In how much time temperature will rise from $27^{\circ} \mathrm{C} \rightarrow 77^{\circ} \mathrm{C}$ Given specific heat of water is
$[4.2 k J / k g]$
A. 8 min 20 sec
B. $6 \sin 2 \mathrm{sec}$
C. 7 min
D. 14 min

Answer: A

- Watch Video Solution

9. Angular speed of hour hand of a clock in degree per second is
A. $\frac{1}{30}$
B. $\frac{1}{60}$
C. $\frac{1}{120}$
D. $\frac{1}{720}$

Answer: C

- Watch Video Solution

10. Which of the following is more close to a black body?
A. Black board paint
B. Green leaves
C. Black holes
D. Red roses

Answer: A

11. The fundamental frequency of a string stretched with a weight of 4 kg is 256 Hz . The weight required to produce its octave is
A. $16 \mathrm{~kg}-\mathrm{wt}$
B. 12 kg - wt
C. $24 \mathrm{~kg}-\mathrm{wt}$
D. $8 \mathrm{~kg}-\mathrm{wt}$

Answer: A

- Watch Video Solution

12. Volume (V) of the nucleus is related to mass number (A) as
A. $V \propto A^{2}$
B. $V \propto A^{1 / 3}$
C. $V \propto A^{2 / 3}$
D. $V \propto A$

Answer: D

- Watch Video Solution

13. When a wire of length 10 m is subjected to a force of 100 N along its length, the lateral strain produced is 0.01×10^{-3}. The poisson's ratio was found to be 0.4 . If area of cross section of wire is $0.25 \mathrm{~m}^{2}$, its young's modulus is
A. $1.6 \times 10^{8} \mathrm{Nm}^{-2}$
B. $2.5 \times 10^{10} \mathrm{Nm}^{-2}$
C. $1.25 \times 10^{11} \mathrm{Nm}^{-2}$
D. $16 \times 10^{9} \mathrm{Nm}^{-2}$

Answer: A

14. A body is moved along a straight line by a machine delivering constant power. The distance moved by the body is time t is proptional to
A. $t^{3 / 4}$
B. $t^{3 / 2}$
C. $t^{1 / 4}$
D. $t^{1 / 4}$

Answer: B

- Watch Video Solution

15. The resistance of the following circuit figure between A and B is

A. $(3 / 2) \Omega$
B. 2Ω
C. 4Ω
D. 8Ω

Answer: A
16. A unifrom electric field having a magnitude E_{0} and direction along the positive X -axis exists. If the protential V is zero at $x=0$, then its value at $X=+x$ will be
A. $V(x)=+x E_{0}$
B. $V(x)=-x E_{0}$
C. $V(x)=x^{2} E_{0}$
D. $V(x)=-x^{2} E_{0}$

Answer: B

- Watch Video Solution

17. Which of the following forces can cause a change in the potential energy?
A. Both conservative and non - conservative forces
B. Conservative force only
C. Non - conservative force only
D. Neither conservative nor non - conservative forces.

Answer: B

- Watch Video Solution

18. Two plane mirrors are kept parallel at 20 cm from each other. A point object O is placed exactly in between them. Calculate distance between
second images formed by two mirros.

A. 80 cm
B. 60 cm
C. 40 cm
D. 10 cm

- Watch Video Solution

19. A uniform chain of mass 4 kg and length 2 m is kept on table such that $3 / 10^{\text {th }}$ of the chain hanges freely from the edge of the table. How much work has to be done in pulling the entire chain on the table?
A. 7.2 J
B. 120 J
C. 1200 J
D. 3.6 J

Answer: D

20. The Earth's atmosphere consists primarily of oxygen (21%) and nitrogen (78%). The rms speed of oxygen molecules $\left(O_{2}\right)$ in the atmosphere at a certain location is $535 \mathrm{~m} / \mathrm{s}$. The rms speed of the nitrogen molecules at this location will be [Given $1 \mathrm{amu}=1.66 \times 10^{-26} \mathrm{~kg}$, molecular mass of $O_{2}=32$, molecular mass
A. $572 \mathrm{~m} / \mathrm{s}$
B. $437 \mathrm{~m} / \mathrm{s}$
C. $835 \mathrm{~m} / \mathrm{s}$
D. $715 \mathrm{~m} / \mathrm{s}$

Answer: A

- Watch Video Solution

21. An ideal gas with pressure P, volume V and temperature T is expanded isothermally to a volume 2 V and final pressure P_{I}. The same gas is expanded adiabatically to a volume 2 V and final pressure in this case is
P_{A}. In terms of the ratio of the two specific heats for the gas γ, the ratio P_{I} / P_{A} is
A. $2^{\gamma-1}$
B. $2^{1-\gamma}$
C. 2^{γ}
D. 2γ

Answer: A

- Watch Video Solution

22. A block of mass 4 kg is kept on a rough horizontal surface. The coefficient of static friction is 0.8 . If a force of 19 N is applied on the block parallel to the floor, then the force of friction between the block and floor is
A. 32 N
B. 18 N
C. 19 N
D. 9.8 N

Answer: C

- Watch Video Solution

23. Calculate the momentum transferred to a surface when a radiation of energy E falls normally on it. Assume that the reflectivity of the surface is unity.
A. E / c
B. $2 E / c$
C. $E c$
D. E / c^{2}

Answer: B

24. A projectile is fired from the surface of earth of radius R with a velocity ηv_{e} where v_{e} is the escape velocity and $\eta<1$. Neglecting air resistance, the orbital velocity of projectile is -
A. $v_{e} \sqrt{1-\eta^{2}}$
B. $v_{e} \sqrt{\frac{\eta^{2}}{5}}$
C. $\frac{2}{5} v_{e} \sqrt{\eta}$
D. $\frac{2 \eta}{5} v_{e}$

Answer: A

Watch Video Solution

25. Relative permittivity and permeability of a material are ε_{r} and μ_{r} respectively which of the following values of these quantities are allowed for a diamagnetic material ?

$$
\text { A. } \varepsilon_{r}=1.5, \mu_{r}=1.5
$$

B. $\varepsilon_{r}=0.5, \mu_{r}=1.5$
C. $\varepsilon_{r}=1.5, \mu_{r}=0.5$
D. $\varepsilon_{r}=0.5, \mu_{r}=0.5$

Answer: C

- Watch Video Solution

26. Calculate the net force acting on the charge present at the origin.

A. $\frac{q q_{2}}{4 \pi \varepsilon_{0} a^{2}} \times \sqrt{2}$
B. $\frac{q q_{2}}{4 \pi \varepsilon_{0} \sqrt{2} a^{2}}+\frac{q q_{1}}{8 \pi \varepsilon_{0} a^{2}}$
C. $\frac{q q_{2}}{4 \pi \varepsilon_{0} a^{2}}\left(\sqrt{2}+\frac{1}{2}\right)$
D. $\frac{q q_{2}}{4 \pi \varepsilon_{0} a^{2}}\left(\frac{1}{2}-\sqrt{2}\right)$

Answer: C

- Watch Video Solution

27. An obsever looks at a distant tree of height 10 m with a telescope of magnifying power of 20. to the observer the tree appears:
A. 20 times taller.
B. 20 times nearer.
C. 10 times taller.
D. 10 times nearer.

Answer: A

28. A nucleus $\cdot{ }_{n}^{m} X$ emits one α-particle and two β - particles. The resulting nucleus is
A. $\cdot{ }_{n-4}^{m-4} Z$
B..$_{n-4}^{m-6} Z$
C. ${ }^{m}{ }^{m-4} X$
D. ${ }_{n-2}^{m-4} Y$

Answer: C

- Watch Video Solution

29. Electric displacement is given by $D=\varepsilon E$, here, $\varepsilon=$ electric permittivity, $\mathrm{E}=$ electric field strength

The dimensions of electric displacement are
A. $\left[M L^{-2} T A\right]$
B. $\left[L^{-2} T^{-1} A\right]$
C. $\left[L^{-2} T A\right]$
D. None of these

Answer: C

- Watch Video Solution

30. On the basis of kinetic theory of gases, the mean K. E. of 1 mole of gas per degree of freedom is
A. $\frac{1}{2} k T$
B. $\frac{3}{2} k T$
C. $\frac{3}{2} R T$
D. $\frac{1}{2} R T$

Answer: D

31. A parallel beam of light of wavelength 600 nm is incident normally on a slit of width d . If the distance between the slits and the screen is 0.8 m and the distance of $2^{\text {nd }}$ order maximum from the centre of the screen is 15 mm . The width of the slit is
A. $9.2 \times 10^{-4} \mathrm{~mm}$
B. $6.4 \times 10^{-4} m$
C. $6.32 \times 10^{-6} \mathrm{~mm}$
D. None of these

Answer: B

- Watch Video Solution

32. Two bodies begin a free fall from rest from the same height 2 seconds apart. How long after the first body begins to fall, the two bodies will be 40 m apart? $\left(\right.$ Take $\left.\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
B. 2 s
C. 3 s
D. 4 s

Answer: C

- Watch Video Solution

33. A particle A is projected from the ground with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$ at an angle of 60° with horizontal. From what height should an another particle B be projected horizontally with velocity $5 \mathrm{~m} / \mathrm{s}$ so that both the particles collide in ground at point C if both are projected
simultaneously $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

A. 10 m
B. 30 m
C. 15 m
D. 25 m

Answer: C

34. The figure shows the path of a positively charged particle 1 through a rectangualr region of unifrom electric field as shown in the figure. What is the direction of electric field and the direction of deflection of particles

2,3 and 4 ?
A. top, down, top, down
B. top, down, down, top
C. down, top, top , down
D. down, top, down, down

Answer: A

- Watch Video Solution

35. Near and far points of a human eye are
A. 25 cm and infinite
B. 25 cm and 100 cm
C. 55 cm and 200 cm
D. 0 cm and 25 cm

Answer: A

- Watch Video Solution

36. A block of mass m is moving on a rough horizontal surface. μ is the coefficient of kinetic friction between the block and the surface. What is the net force exerted by the surface on the block?
A. $m g \sqrt{1+\mu^{2}}$
B. $\mu m g$
C. $m g$
D. $m g \sqrt{1-\mu^{2}}$

- Watch Video Solution

37. A stone is tied to one end of a string and rotated in horizontal circle with a uniform angular velocity. The tension in the string is T , if the length of the string is halved and its angular velocity is doubled, the tension in the string will be
A. $2 T$
B. 4 T
С. T
D. 8 T

Answer: A

38. A straight conductor of length 0.4 m is moved with a speed of $7 \mathrm{~m} / \mathrm{s}$ perpendicular to the magnetic field of intensity of $0.9 \mathrm{~Wb} / \mathrm{m}^{2}$. The induced e.m.f. across the conductor will be
A. 7.25 V
B. 5.52 V
C. 1.25 V
D. 2.52 V

Answer: D

- Watch Video Solution

39. Two spheres A and B have diameters in the ratio $1: 2$, densities in the ratio $2: 1$ and specific heat in the ratio $1: 3$. Find the ratio of their thermal capacities.
A. 1: 6
B. $1: 12$
C. 1:3
D. 1: 4

Answer: B

- Watch Video Solution

40. A fish is near the centre of a spherical water filled ($\mu=4 / 3$)fish bowl, a child stands in air at a distance $2 R$ (R is the radius of curvature of the sphere)from the centre of the bowl. At what distance from the centre would the child nose appear to the fish situated at the centrer:
A. R
B. 2 R
C. 3R
D. 4 R

Answer: C

- Watch Video Solution

41. A conducting circular loop of radius r carries a constant current i. It is placed in a uniform magnetic field B_{0} such that B_{0} is perpendicular to the plane of loop. What is the magnetic force acting on the loop?
A. $i r B_{0}$
B. $2 \pi i r B_{0}$
C. zero
D. $\pi i r B_{0}$

Answer: C

42. A 4 kg mass and a 1 kg mass are moving with equal kinetic energies. The ratio of the magnitudes of their linear momenta is
A. 1:2
B. 1:1
C. 2: 1
D. 4:1

Answer: C

- Watch Video Solution

43. A bullet of mass 10 g moving horizontally with a velocity of $400 \mathrm{~ms}^{-1}$ strikes a wooden block of mass 2 kg which is suspended by a light inextensible string of length 5 m . As a result, the centre of gravity of the block is found to rise a vertical distance of 10 cm . The speed of the bullet after it emerges out horizontally from the block will be
A. $100 m s^{-1}$
B. $80 m s^{-1}$
C. $120 m s^{-1}$
D. $160 \mathrm{~ms}^{-1}$

Answer: C

- Watch Video Solution

44. The ratio of the magnetic field at the centre of a current carrying circular coil to its magnetic moment is x. If the current and radius both are doubled the new ratio will become
A. 2 x
B. 4 x
C. $x / 4$
D. $x / 8$

Answer: D

- Watch Video Solution

45. In a series $L-R$ circuit, under which condition the power loss will be least for an a.c voltage source?
A. high resistance and high inductance
B. high resistance and low inductance
C. low resistance and high inductance
D. low resistance and low inductance

Answer: C

- Watch Video Solution

