© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NEET MOCK TEST 11

Physics

1. the energy required to excite an electron in hydrogen
atom to its first excited state is
A. 10.2 eV
B. 5.1 eV
C. 3.4 eV
D. 6.8 eV

Answer:

D Watch Video Solution

2. Which of the following figure represents the variation of particle momentum and the associated de - Broglie wavelength ?

$$
\text { A. } \xrightarrow[\lambda]{\text { ? }}
$$

Answer:

- Watch Video Solution

3. The figure shows a disc of radius 3 R from which a circular hole of radius R is cut as shown in the figure.

The distance of the centre of mass of the remaining object from the point O is

A. R/4
B. $R / 5$
C. R/3
D. $R / 6$

D Watch Video Solution

4. A block A of mass $2 m$ is hanging from a vertical massless spring of spring constant k and is in equilibrium. Another block B of mass m strikes the block

A with velocity u and sticks to it as shown in the figure.
The magnitude of the acceleration of the combined

A. $g / 2$
B. $g / 3$
C. g

Answer:

D Watch Video Solution

5. A block A starts sliding on a smooth track from a height h as shown in the figure. The track smoothly joins into a conveyor belt which is being driven by a pulley of radius r. I the angular velocity ω of the pulley is such that the block A doesn't slip on the belt, the value
of ω is

A. $\frac{\sqrt{g h}}{r}$
B. $\frac{\sqrt{h g}}{2 r}$
C. $\frac{\sqrt{2 g h}}{r}$
D. $\frac{2 \sqrt{g h}}{r}$

Answer:
6. If a copperr rod (free to move and rotate) is brought in a region of a non-uniform magnetic field, then it will align itself
A. Along the direction of the magnetic field, at a location where the magnetic field is strongest
B. along the direction of the magnetic field, at a
location where the magnetic field is weakest
C. perpendicular to the direction of the magnetic
field, at a location where the magnetic field is
strongest
D. perpendicular to the direction of the magnetic field, at location where the magnetic field is weakest

Answer:

- Watch Video Solution

7. In a house 15 Bulbs of 45 W , 15 bulbs of $100 \mathrm{~W}, 15$
bulbs of 10 W and Two heaters of 1 KW each is connected to 220 V Mains supply then find minimum fuse current
A. 20A
B. 15 A
C. 10A
D. 25 A

Answer:

(D) Watch Video Solution

8. The voltage drop between the points A and B in the given figure is

A. 24 V
B. 14 V
C. 32 V
D. 48 V

Answer:

- Watch Video Solution

9. A charged $30 \mu F$ capacitor is connected to a 27 mH inductor.

What is the angular frequency of free oscillations of the circuit?
A. $9.1 \times 10^{3} \mathrm{rad} \quad \mathrm{s}^{-1}$
B. $3 \times 10^{3} \mathrm{rad} \quad \mathrm{s}^{-1}$
C. $1.1 \times 10^{3} \mathrm{rad} \mathrm{s}^{-1}$
D. $0.3 \times 10^{3} \mathrm{rad} \quad \mathrm{s}^{-1}$

Answer:

- Watch Video Solution

10. In an AC circuit, a resistance of Rohm is connected is series with an inductance L. If phase angle between
volage and current be 45°, the value of inductive reactance will be
A. $R / 4$
B. $R / 2$
C. R
D. $R / 8$

Answer:

- Watch Video Solution

11. In the circuit shown below, the charge on the $60 \mu F$ capacitor is

A. $150 \mu C$
B. $100 \mu C$
C. $50 \mu C$
D. $75 \mu C$

Answer:

12. In a uniform electric field, a point charge of mass m and charge q is released from rest. If there are no other forces acting on the particle, then which of the following graphs, correctly show the dependence of the particles speed v on the distance x travelled by the particles speed v on the distance x travelled by it? [Graphs are schematic and not drawn to scale]
A.

B.

c.

D.

Answer:

- Watch Video Solution

13. One division on the main scale has 20 equal divisions which match with 16 main scale division. The leat count of the vernier calipers is
A. 0.02 mm
B. 0.2 mm
C. 0.8 mm
D. 0.08 mm

Answer:

- Watch Video Solution

14. A body is projected up with a velocity equal to
$\sqrt{\frac{9 G M}{8 R}}$, where M is the mass of the earth and R is the
radius of the earth. The maximum distance it reaches
from the centre of the earth is

$$
\text { A. } \frac{10 R}{9}
$$

B. $\frac{16 R}{7}$
C. $\frac{10 R}{3}$
D. $\frac{9 R}{8}$

Answer:

- Watch Video Solution

15. The acceleration due to gravity at a depth $R / 2$
below the surface of the earth is
A. g
B. 2 g
C. $\mathrm{g} / 2$
D. $\mathrm{g} / 4$

Answer:

D Watch Video Solution

16. A spherical black body with a radius of 12 cm radiates
$450 W$ power at 500 K . If the radius were halved and the
temperature doubled, the power radiated in watt would be
A. 3600 W
B. 450 W
C. 900 W
D. 1800 W

Answer:

D Watch Video Solution

17. The temperature of an ideal gas undergoing adiabatic expansion varies with volume as $T \propto V^{-\frac{3}{4}}$, then the value of $\frac{C_{P}}{C_{V}}$ for the gas is
A. $\frac{3}{5}$
B. $\frac{5}{3}$
C. $\frac{7}{3}$
D. $\frac{7}{4}$

Answer:

- Watch Video Solution

18. The specific heats, C_{P} and C_{V} of a gas of diatomic molecules, A are given (in units of $\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$) by 29 and 22 , respectively. Another gas of diatomic molecules , B has the corresponding values 30 and 21 . if they are treated as ideal gases, then :
A. A has one vibrational degree of freedom and B has two vibrational degrees of freedom
B. A has one vibrational degree of freedom and B
has zero vibrational degree of freedom
C. A and B both have one vibrational degree of freedom
D. A and B both have two vibrational degrees of freedom

Answer:

D Watch Video Solution

19. In an isobaric process, heat is supplied to a monoatomic ideal gas. The fraction of heat that goes itno mechanical work is
A. 1
B. $\frac{2}{3}$
C. $\frac{3}{5}$
D. $\frac{2}{5}$

Answer:

- Watch Video Solution

20. Consider the situation shown in figure. If the current

I in the long straight wire $x y$ is increased at a steady
rate the induced current in loop A and B will be

A. Clockwise in A and anticlockwise in B
B. Anticlockwise in A and clockwise in B
C. Clockwise in both A and B
D. Anticlockwise in both A and B

Answer:

D Watch Video Solution

21. A short bar magnetic is placed in a uniform magnetic field of 0.25 T , with its axis at an angle of 30° with the field. If it experiences a torque of magnitude $4.5 \times 10^{-2} \mathrm{~N} \mathrm{~m}$, then its magnetic momentum is
A. $0.36 \mathrm{~N} \mathrm{~m} \mathrm{~T}^{-1}$
B. $0.25 \mathrm{~N} \mathrm{~m} \mathrm{~T}^{-1}$
C. $0.5 \mathrm{~N} \mathrm{~m} \mathrm{~T}^{-1}$
D. $1.25 \mathrm{~N} \mathrm{~m} \mathrm{~T}^{-1}$

Answer:

D Watch Video Solution

22. Find the time after which the particle's initial velocity will be perpendicular to instantaneous velocity whebn it is projected with $30 \mathrm{~m} / \mathrm{s}$ from horizontal ground by making an angle 60° with vertical
A. 6 second
B. $2 \sqrt{3}$ second
C. 3 second
D. Never possible

Answer:

D Watch Video Solution

23. If the mass of $A=10 \mathrm{~kg}$, coefficient of static friction $=0.22$, coefficient of kinetic friction $=0.2$, then
minimum mass of B to start motion is

A. 2 kg
B. 2.2 kg
C. 4.8 kg
D. 3.4 kg

Answer:
24. A mass string going over a clamped pulley of mass m supports a block of mass M as shown in the figure.

The force on the pulley by the clamp is given

A. $\sqrt{2} M g$
B. $\sqrt{2} m g$
C. $g \sqrt{(M+m)^{2}+m^{2}}$
D. $g \sqrt{(M+m)^{2}+M^{2}}$

Answer:

- Watch Video Solution

25. In a radioactive material the activity at time t_{1} is R_{1} and at a later time t_{2}, it is R_{2}. If the decay constant of the material is λ, then
A. $R_{1}=R_{2}$
B. $R_{1}=R_{2} e^{-\lambda\left(t_{1}-t_{2}\right)}$
C. $R_{1}=R_{2} e^{\lambda\left(t_{1}-t_{2}\right)}$
D. $R_{1}=R_{2}\left(t_{2} / t_{1}\right)$.

Answer:

D Watch Video Solution

26. ${ }_{92} \mathrm{U}^{235}$ undergoes successive disintegrations with the end product of ${ }_{82} \mathrm{~Pb}^{203}$. The number of α and β particles emitted are
A. $\alpha=6, \beta=4$
B. $\alpha=6, \beta=0$
C. $\alpha=8, \beta=6$
D. $\alpha=3, \beta=3$

Answer:

D Watch Video Solution

27. A pendulum is executing simple harmonic motion and its maximum kinetic energy is K_{1}. If the length of the pendulum is doubled and it performs simple harmonic motion with the same amplitude as in the first case, its maximum kinetic energy is K_{2} Then:
A. K_{2}
B. $K_{2}=\frac{K_{1}}{2}$
C. $K_{2}=K_{1}$
D. $K_{2}=\frac{k_{1}}{4}$

Answer:

D Watch Video Solution

28. A radio transmitter operates at a frequency of 880 kHz and a power of 10 kW . The number of photons emitted per second are
A. $1.72 \times x 10^{\wedge}(31)^{`}$
B. 1.327×10^{25}
C. 1.327×10^{37}
D. 1.327×10^{45}

D Watch Video Solution

29. Let K_{1} be the maximum kinetic energy of photoelectrons emitted by a light of wavelength λ_{1} and K_{2} corresponding to $\lambda 2$). If $\lambda_{1}=2 \lambda_{2}$, then
A. $2 K_{1}=K_{2}$
B. $K_{1}=2 K_{2}$
C. $K_{1}<K_{2} / 2$
D. $K_{1}>2 K_{2}$

Answer:

D Watch Video Solution

30. P is the atmospheric pressure and the pressure at the bottom of a tank of water is $3 P$. If the water is drawn out to lower the level of water by one fifth, then the pressure at the bottom of the tank will be
A. $2 P$
B. $(13 / 5) P$
C. (8/5)P
D. $(4 / 5) \mathrm{P}$

Answer:

- Watch Video Solution

31. One end of a horizontal thick copper wire of length
$2 L$ and radius $2 R$ is welded to an end of another horizontal thin copper wire of length L and radius R
.When the arrangement is stretched by applying forces
at two ends, the ratio of the elongation in the thin wire to that in the thick wire is
A. 0.5
B. 0.25
C. 4
D. 2

Answer: D
32. $A B$ and $C D$ are surfaces ot two slabs as shown in

Figure. The medium between the slabs has refractive indes 2. Refractive indes of the slab above $A b$ is $\sqrt{2}$ and below $C D$ is $\sqrt{3}$. Find the minimum angle of incidence at Q , so that the ray is totally reflected by both the slabs.

A. 60
B. 30
C. 45
D. 15

Answer:

- Watch Video Solution

33. The given lens is broken into four parts rearranged as shown. If the initial focal length is f , then after
rearrangement the equivalent focal length is

A. f
B. f/2
C. $\mathrm{f} / 4$
D. 4 f

D Watch Video Solution

34. Two discs A and B are in contact and rotating with angular velocity with angular velocities ω_{1} and ω_{2} respectively as shown. If there is no slipping between the discs, then

A. $\omega_{1}=\omega_{2}$
B. $\omega_{1}>\omega_{2}$
C. $\omega_{1}<\omega_{2}$
D. data insufficient

Answer:

- Watch Video Solution

35. A ring of radius R rolls without slipping on a rough
horizontal surface with a constant velocity. The radius of curvature of the path followed by any particle of the
ring at the highest point of its path will be :

A. 5 R
B. 2 R
C. 4 R
D. none of these

Answer:

36. The circuit is equivalent to

A. AND gate
B. OR gate
C. NOT gate
D. NAND gate

Answer:

- Watch Video Solution

37. Consider the junction diode as ideal. The value of current flowing throgh $A B$ is:

A. $O A$
B. $10^{-2} \mathrm{~A}$
C. $10^{-1} A$
D. $10^{-3} \mathrm{~A}$

Answer:
(D) Watch Video Solution
38. A steel scale is to be prepared such that the millimeter intervals are to be accurate within
$6 \times 10^{-5} \mathrm{~mm}$. The maximum temperature variation
form the temperature of calibration during the reading of the millimeter marks is $\left(\alpha=12 \times 10^{-6} /{ }^{\circ} C\right)$
A. $4.0^{\circ} \mathrm{C}$
B. $4.5^{\circ} \mathrm{C}$
C. $5.0^{\circ} \mathrm{C}$
D. $5.5^{\circ} \mathrm{C}$.

Answer:

39. When a bimetallic strip is heated, it
A. does not bend at all
B. gets twisted in the from of an helix
C. bends in the form of an arc with the more expandable metal outside
D. bends in the form of an arc with the more
expandable metal inside

Answer:

D Watch Video Solution

40. The internal and external diameters of a hollow cylinder are measured with the help of a Vernier callipers Their values are
$4.23 \pm 0.01 \mathrm{~cm}$ and $3.87 \pm 0.01 \mathrm{~cm}$, respectively . The thickness of the wall of the cylinder is
A. $0.35 \pm 0.02 \mathrm{~m}$
B. $0.18 \pm 0.02 \mathrm{~cm}$
C. $0.36 \pm 0.01 \mathrm{~cm}$
D. $0.18 \pm 0.01 \mathrm{~cm}$

Answer:

41. In a Young's double slit experiment, I_{0} is the intensity at the central maximum and β is the fringe width. The intensity at a point P distant x from the centre will be
A. $I_{0} \cos \frac{\pi x}{\beta}$
B. $4 I_{0} \cos ^{2} \frac{\pi x}{\beta}$
C. $I_{0} \cos ^{2} \frac{\pi x}{\beta}$
D. $\frac{I_{0}}{4} \cos ^{2} \frac{\pi x}{\beta}$

Answer:

- Watch Video Solution

42. In Young's double experiment, in air interference pattern second minimum is observed exactly in front of one slit. The distance beween the two coherent source is ' d ' and the distance between source and screen ' D '.

The wavelength of light source used is
A. $\frac{d^{2}}{D}$
B. $\frac{d^{2}}{2 D}$
C. $\frac{d^{2}}{3 D}$
D. $\frac{d^{2}}{4 D}$.

Answer:

43.

$x_{1}=12 \sin (484 \pi t-7 \pi x)$ and $x_{2}=12 \sin (480 \pi t-7 \pi x)$
represent the equation of two sound waves and x and t are in metre and second. Beat frequency (in Hz) produced by these two waves is
A. 4
B. 3
C. 2
D. 1

Answer:

44. If the bulk modulus of water is 2100 M Pa , what is the speed of sound in water ?
A. $1320 \mathrm{~m} / \mathrm{s}$
B. $1450 \mathrm{~m} / \mathrm{s}$
C. $1580 \mathrm{~m} / \mathrm{s}$
D. $1630 \mathrm{~m} / \mathrm{s}$

Answer:

- Watch Video Solution

45. A simple pendulum is released from A as shown. If m
and 1 represent the mass of the bob and length of the
pendulum, the gain kinetic energy at B is

