©゙’doubtnut

PHYSICS

BOOKS - NTA MOCK TESTS

NEET MOCK TEST 13

Mcqs Physics

1. We have three beakers A, B and C containing glycerine, water and kerosene respectively. They are stirred vigorously and
placed on a table. The liquid which comes to

rest at the earliest is

A. glycerin
B. water
C. kerosene
D. all of them at the same

Answer: A
(Watch Video Solution
2. A block rests on a fixed rough inclined place and a horizontal force F is applied to it, as shown in the figure. Which of the following statements are correct?
(A) Normal reaction on the block is
$F \sin \theta+m g \cos \theta$
(B) The friction force is zero when
$F \cos \theta=m g \sin \theta$
(C) The value of limiting friction is
$\mu(m g \sin \theta+F \cos \theta)$
(D) The value of limiting friction is
$\mu(m g \sin \theta-F \cos \theta)$

A. 1,2
B. 3,4
C. 2,4
D. 2,3
3. The coordinates of the center of mass of the
following quarter circular arc are

A. $\left(\frac{r}{2}, \frac{r}{2}\right)$
B. $\left(\frac{2 r}{3}, \frac{2 r}{3}\right)$
C. $\left(\frac{2 r}{\pi}, \frac{2 r}{\pi}\right)$
D. $\left(\frac{4 r}{\pi}, \frac{4 r}{\pi}\right)$

Answer: C

D Watch Video Solution

4. A radioactive material has mean lives of

1620 years and 660 years for α and β emissions respectively the material decays by
simultaneous α and β emission. The time in
which $\frac{1}{4} t h$ of the material remains intact is-
A. 4675 years
B. 720 years
C. 650 years
D. 324 years

Answer: C

- Watch Video Solution

5. Two wires A an $d B$ of the same material,
having radii in the ratio I: 2 and carry currents
in the ratio 4: I. The ratio of drift speed of electrons in A and Bis :
A. $16: 1$
B. $1: 16$
C. 1:4
D. $4: 1$

Answer: A
6. If K_{1} and K_{2} are maximum kinetic energies of photoelectrons emitted when light of wavelength λ_{1} and λ_{2} respectively are incident on a metallic surface. If $\lambda_{1}=3 \lambda_{2}$ then
A. $K_{1}>K_{2} / 3$
B. $K_{1}<K_{2} / 3$
C. $K_{1}=3 K_{2}$
D. $K_{2}=3 K_{1}$

Answer: B

D Watch Video Solution

7. In Uranium ($\mathrm{Z}=92$), the K absorption edge is

$0.107 \AA$ and the K_{α} line is $0.126 \AA$. The wavelength of the L absorption edge is
A. $0.7 \AA$
B. $1 \AA$
C. $2 \AA$
D. $3.2 \AA$

D Watch Video Solution

8. A camera objective has an aperture diameter d . If the aperture is reduced to diameter $d / 2$ the exposure time under identical conditions of light should be made
A. $\sqrt{2}$ fold
B. 2 fold
C. $2 \sqrt{2}$ fold

D. 4 fold

Answer: D

D Watch Video Solution

9. When an object is at distances x and y from
a lens, a real image and a virtual image is
formed respectively having sam
magnification. The focal length of the lens is
A. $\frac{x+y}{2}$
B. $x-y$
C. $\sqrt{x y}$
D. $x+y$

Answer: A

- Watch Video Solution

10. In the given circuit the average power developed is:

A. $50 \sqrt{2}$ watt
B. 200 watt
C. $150 \sqrt{2}$ watt

D. $200 \sqrt{2}$ watt

Answer: B
11. A current $I=10 \sin (100 \pi t)$ amp. Is passed
in first coil, which induces a maximum e.m.f of
5π volt in second coil. The mutual inductance between the coils is-
A. 5 mH
B. 10 mH
C. 15 mH
D. 20 mH
12. What will be the magnetic field at point P in
the figure below?

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0} i}{4 R} \frac{3}{4} \\
& \text { B. } \frac{\mu_{0} i}{4 R}\left(\frac{2}{\pi}+1\right)
\end{aligned}
$$

C. $\frac{\mu_{0} i}{2 R}\left(\frac{2}{\pi}+1\right)$
D. $\frac{2 \mu_{0} i}{2 R}\left(\frac{2}{\pi}+1\right)$

Answer: B

D Watch Video Solution

13. The time of vibration of a dip needle in the
vertical plane is 3 sec the magnetic needle is
made to vibrate in the horizontal plane, the
time of vibration is $3 \sqrt{2} s$. Then angle of dip
will be-
A. 90°
B. 60°
C. 45°
D. 30°

Answer: B

D Watch Video Solution

14. If only one hundredth part of total current flowing in the circuit is to be passed through a
galvanometer of resistance $G \Omega$, Then the value of shunt resistance required will be-
A. $\frac{G}{10}$
B. $\frac{G}{100}$
C. $\frac{G}{99}$
D. $\frac{G}{999}$.

Answer: C
(Watch Video Solution
15. Separation between the plates of parallel
plate capacitor is 5 mm . this capacitor, having air as the dielectric medium between the plates, is charged to a potential difference 25

V using a battery. The battery is then disconnected and a dielectric slab of thickness 3 mm and dielectric constant $\mathrm{K}=10$ is placed between the plates as shown. potential difference between the plates after the

A. 18.5 V
B. 13.5 V
C. 11.5 V

D. 6.5 V

Answer: C

D Watch Video Solution

16. A capacitor of capacitance $100(\mu) F$ is
charged by connecting it to a battery of emf 12

V and internal resistance $2(\Omega)$. (a) Find the
time constant of the circuit. (b) Find the time
taken before 99% of maximum charge is
stored on the capacitor.
A. 0.92 ms
B. 0.4 ms
C. 0.8 ms
D. 0.1 ms

Answer: A

D Watch Video Solution

17. Positive charge q is given to each plate of a parallel plate air capacitor having area of each plate A and seperation between them, d. Then
find
(i) Capacitance of the system. (ii) Charges appearing on each surface of plates
(iii) Electric field between the plates (iv) Potential diffrence between the plates
(v) Energy stored between hte plates
A. since both the plates are identically charged, therefore, capacitance becomes
equal to zero
B. energy stored in the space between the
capacitor plates is equal to $\frac{q^{2}}{\varepsilon_{0} A^{2}}$.
C. no charge appears on inner surface of the plates
D. potential difference between the plates

$$
\text { is equal to } \frac{2 q d}{\varepsilon_{0} A}
$$

Answer: C

D Watch Video Solution
18. Which of the following statements is correct?
A. When a lens is dipped in water, magnitude of its focal length increases.
B. When a lens is dipped in water, magnitude of its focal length decreases
C. When a spherical mirror is dipped in
water, magnitude of its focal length increases.
D. None of these.

Answer: A

19. A $25 \mathrm{~W}, 220 \mathrm{~V}$ bulb and $100 \mathrm{~W}, 220 \mathrm{~V}$ bulb are joined in series and connected to the mains.

Which bulb will glow brighter-
A. 25 W bulb
B. 100 W bulb
C. first 25 W bulb and then 100 W bulb
D. Both will glow with same brighteness

Answer: A

D Watch Video Solution
20. A solid, uncharged conducting sphere of radius 3 a contains a concentric hollowed spherical cavitiy of radius a.

A point charge $+Q$ is placed at the center of
the spheres. Taking $\mathrm{V}=0$ at $r \rightarrow \infty$, the potential at position $r=2 a$ from the center is-

$$
\begin{aligned}
& \text { A. } \frac{K Q}{a} \\
& \text { B. } \frac{K Q}{2 a} \\
& \text { C. } \frac{K Q}{3 a} \\
& \text { D. } \frac{2 K Q}{3 a}
\end{aligned}
$$

Answer: C

- Watch Video Solution

21. Two point charges placed at a distance r in
air exert a force f on each other. The value of distance R at which they experience force $4 F$ when placed in a medium of dielectric constant $\mathrm{K}=16$ is :
A. r
B. $\frac{r}{8}$
C. $\frac{r}{4}$
D. $\frac{r}{2}$

Answer: B
22. The root-mean-square (rms) speed of oxygen molecules $\left(O_{2}\right)$ at a certain absolute temperature is v.lf the temperature is double and the oxygen gas dissociated into atomic oxygen, the rms speed would be
A. v
B. $\sqrt{2} v$
C. $2 v$

D. $2 \sqrt{2} v$

Answer: C

D Watch Video Solution

23. The pressure and volume of a given mass
of gas at a given temperature are P and V respectively. Keeping the temperature constant, the pressure is increased by 10% and
the system is allowed to achieve a steady-
state, then the pressure is decreased by 10% what cann be said about the final volume?
A. less than V
B. more than V
C. equal to V
D. less than V for diatomic and more than V
for monoatomic

Answer: B
24. Four spheres A, B, C and D of different metals but all same radius are kept at same temperature. The ratio all their densities and specific heats are $2: 3: 5: 1$ and $3: 6: 2: 4$.

Which sphere will show the fastest rate all cooling (initially) (assume black body radiation for all of them)
A. A
B. B
C. C
D. D

Answer: D

D Watch Video Solution

25. A man is standing between a stationary
source and cliff. When he starts moving along
line joining him and source, he hears 10 beats per second. The velocity of mas is [frequency of source $=600 \mathrm{~Hz}$, velocity of sound $=330 \mathrm{~ms}^{-1}$]
A. $5.5 \mathrm{~m} / \mathrm{s}$
B. $11 \mathrm{~m} / \mathrm{s}$
C. $16 / 5 \mathrm{~m} / \mathrm{s}$
D. $2.75 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

26. An earthquake generates both transverse
(S) and longitudinal (P) sound waves in the earth. The speed of S waves is about $6 \mathrm{~km} s^{-1}$ and that of P waves is about $9 \mathrm{~km} s^{-1}$. A seismograph records P and S waves from an
earthquarke. The first P wave arrives 5 minutes
before the first S wave. the epicenter of the earth quake is located at a distance
A. 54 km
B. 540 km
C. 5400 km
D. 72 km

Answer: C

D Watch Video Solution
27. A pendulum has time period T for small oscillations. An obstacle P is situated below the point of suspension O at a distance $\frac{3 l}{4}$.

The pendulum is released from rest.
Throughout the motion, the moving string makes small angle with vertical. Time after which the pendulum returns back to its initial
position is

A. T
B. $3 T / 4$
C. $3 T / 5$
D. $4 T / 5$

Answer: B

D Watch Video Solution

28. A body is projected up with a velocity equal to $3 / 4 t h$ of the escape velocity from the surface of the earth. The height it reaches is (Radius of the earth is R)
A. 10R/9
B. $9 \frac{R}{7}$
C. 9 R ? 8
D. $10 \mathrm{R} / 3$

Answer: B

D Watch Video Solution
29. If the density of a planet is constant, then
the curve between value of g on its surface and its radius r will be-

A.
B.

C.

Answer: A

-
 Watch Video Solution

30. Why are electric field lines perpendicular at a point on an equipotential surface of a conductor?
A. perpendicular to the surface
B. parallel to the surface
C. in all directions
D. zero

Answer: A

D Watch Video Solution

31. Three rods each of length L and mass M are placed along X, Y and Z axis in such a way that one end of each of the rod is at the origin. The moment of inertia of this system about Z axis is

> A. $\frac{M L^{2}}{3}$
> B. $\frac{2 M L^{2}}{3}$
> C. $\frac{2 M L^{2}}{6}$
D. $M L^{2}$

- Watch Video Solution

32. A uniform circular disc placed on a horizontal rough surface has initially a velocity v_{0} and an angular velocity ω_{0} as shown in the figure. The disc comes to rest after moving some distance in the direction of motion. Then v_{0} / ω_{0} is :

A. $\frac{1}{2}$
B. 2
C. $\frac{1}{3}$
D. 3

Answer: A

D Watch Video Solution

33. A ball of mass m approaches a wall of mass

M ($M \gg m$), with speed $2 m s^{-1}$ along the normal to the wall. The speed of wall is 1
$m s^{-1}$ towards the ball. The speed of the ball after an elastic collision with the wall is-
A. $2 m s^{-1}$ away from the wall
B. $3 m s^{-1}$ away from the wall
C. $4 m s^{-1}$ away from the wall
D. $5 m s^{-1}$ away from the wall

Answer: C

D Watch Video Solution

34. Consider the nuclear reaction
$X^{200} \rightarrow A^{110}+B^{80}+10 n^{1}$. If the binding
energy per nucleon for X, A and B are 7.4 MeV,
8.2 MeV and 8.1 MeV respectively, then the energy released in the reaction:
A. 70 MeV
B. 200 MeV
C. 190 MeV
D. 10 MeV

Answer: A

- Watch Video Solution

35. The magnitude of the force (in newtons)
acting on a body varies with time t (in micro
seconds) as shown in the fig $A B, B C$ and $C D$ are
straight line segments. The magnitude of the total impulse of the force on the body from
$t=4 \mu s$ to $t=16 \mu s$ isNs

A. $6 \times 10^{-3} N s$
B. $5.0 \times 10^{-3} \mathrm{Ns}$
C. $8.4 \times 10^{-3} \mathrm{Ns}$
D. $7.6 \times 10^{-3} \mathrm{Ns}$

Answer: B

- Watch Video Solution

36. Mass is non-uniformly distributed over the rod of length I, its linear mass density varies linearly with length as $\lambda=k x^{2}$. The position of centre of mass (from lighter end) is given by-
A. $2 l / 5$
B. $3 / l$
C. $3 l / 4$
D. $2 l / 3$

Answer: C

- Watch Video Solution

37. A hydrogen atom moving at a speed v absorbs a photon of wavelength 122 nm and
stops. The value of v is (mass of hydrogen atom $\left.=1.67 \times 10^{-27} \mathrm{~kg}\right)$
A. $2.75 \mathrm{~m} / \mathrm{s}$
B. $3.25 \mathrm{~m} / \mathrm{s}$
C. $4.85 \mathrm{~m} / \mathrm{s}$

D. $5.65 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

38. In a common emitter amplifier, using output reisistance of 5000 ohm and input resistance fo 2000 ohm, if the peak value of input signal voltage is 10 mV and $\beta=50$, then the peak value of output voltage is

$$
\text { A. } 5 \times 10^{-6} V
$$

$$
\text { B. } 2.5 \times 10^{-4} V
$$

C. 1.25 V
D. 125 V

Answer: C

D Watch Video Solution

39. Identify the operation performed by the
circuit given below-

A. NOT
B. AND
C. OR
D. NAND

Answer: B

- Watch Video Solution

40. The electric field and the electric potential at a point are E and V respectively.
A. If $\mathrm{E}=0, \mathrm{~V}$ must be zero
B. If $\mathrm{V}=0, \mathrm{E}$ must be zero
C. If $E \neq 0, \mathrm{~V}$ may be zero
D. If $V \neq 0$, E cannot be zero

Answer: C

D Watch Video Solution

41. Initially K_{1} is closed, now if K_{2} is also
closed, find heat dissipated in the resistances of connecting wires

A. $\frac{1}{2} C V^{2}$
B. $\frac{2}{3} C V^{2}$
C. $\frac{1}{3} C V^{2}$

$$
\text { D. } \frac{1}{4} C V^{2}
$$

Answer: C

- Watch Video Solution

42. All the bulbs below are identical. Which bulb(s) shine(s) most brightly?

A. 1 only
B. 2 only
C. 3 and 4
D. 1 and 5

Answer: D

D Watch Video Solution

43. An electron moving with a velocity v along
the positive x-axis approaches a circular current carrying loop as shown in the fig. the
magnitude of magnetic force on electron at this instant is

A. $\frac{\mu_{0}}{4} \frac{e v i R^{2} x}{\left(x^{2}+R^{2}\right)^{3 / 2}}$
B. $\mu_{0} \frac{e v i R^{2} x}{\left(x^{2}+R^{2}\right)^{3 / 2}}$
C. $\frac{\mu_{0}}{4 \pi} \frac{e v i R^{2} x}{\left(x^{2}+R^{2}\right)^{3 / 2}}$
D. None of these.

Answer: D

- Watch Video Solution

44. A circular coil carrying current I is placed in
a region of uniform magnetic field acting perpendicular to a coil as shown in te Mark

correct option

A. coil exapands
B. coil contracts
C. coil moves left
D. coil moves right

Answer: A
45. The material suitable for making electromagnets should have
A. high retentivity and low coercivity
B. low retentivity and low coercivity
C. high retentivity and high coercivity
D. low retentivity and high coercivity

Answer: B

