©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NEET MOCK TEST 17

Physics

1. Light of wavelength $5000 \AA$ is incident over a
slit of width $1 \mu m$. The angular width of central
A. 30°
B. 60°
C. 90°
D. 120°

Answer: B

D Watch Video Solution

2. Two blocks of masses $M=3 \mathrm{~kg}$ and $\mathrm{m}=2 \mathrm{~kg}$ are in contact on a horizontal table. A constant horizontal force $\mathrm{F}=5 \mathrm{~N}$ is applied to
block M as shown. There is a constant frictional force of 2 N between the table and the block m but no frictional force between the table and the first block M, then acceleration of the two blocks is

A. $0.4 m s^{-2}$
B. $0.6 m s^{-2}$
C. $0.8 m s^{-2}$
D. $1 m s^{-2}$

Answer: B

D Watch Video Solution

3. A disc of radius 0.1 m rolls without sliding on
a horizontal surface with a velocity of $6 m s^{-1}$.

It then ascends a smooth continuous track as
shown in figure. The height upto which it will
ascend is $\left(g=10 m s^{-2}\right)$

A. 2.4 m

B. 0.9 m

C. 2.7 m
D. 1.8 m

Answer: D
4. A bob hangs from a rigid support by an inextensible string of length I. It is released from rest when string makes an agngle 60° with vertical . The speed of the bob at the lowest position is
A. $\sqrt{g l}$
B. $\sqrt{3 g l}$
C. $\sqrt{2 g l}$
D. $\sqrt{5 g l}$

- Watch Video Solution

5. The activity of a sample of radioactive material A_{1} at time t_{1} and A_{2} at time $t_{2}\left(t_{2}>t_{1}\right)$. Its mean life is T.
A. $A_{1} t_{1}=A_{2} t_{2}$
B. $\frac{A_{1}+A_{2}}{t_{2}-t_{1}}=$ constant
C. $A_{2}=A_{1} e^{\left(t_{1}-t_{2}\right) / T}$
D. $A_{2}=A_{1} e^{\left(t_{1} / T t_{2}\right)}$

Answer: C

D Watch Video Solution

6. Light rays of wavelength $6000 A^{\circ}$ and of photon intensity $39.6 \mathrm{Wm}^{-2}$ is incident on a metal surface. If only one percent of photons incident on the surface of electrons emitted per second unit area from the surface will be [Planck constant $=6.64 \times 10^{-34} J-S$,Velocity of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$]
A. 12×10^{18}
B. 10×10^{18}
C. 12×10^{17}
D. 12×10^{19}

Answer: C

D Watch Video Solution

7. Microscope is an optical instrument which

A. enlarges the object
B. increases the visual angle formed by the object at the eye
C. decreases the visual angle formed by the object at the eye

D. brings the object nearer

Answer: B

D Watch Video Solution

8. The maximum intensity in young's doubleslit experiment is I_{0}. Distance between the slit is $d=5 \lambda$, where λ is the wavelength of monochromatic light used in the experiment.

What will be the intensity of light in front of one of the slits on a screen at a distance $D=10 d ?$

$$
\begin{aligned}
& \text { A. } \frac{I_{0}}{2} \\
& \text { B. } \frac{3}{4} I_{0} \\
& \text { C. } \frac{I_{0}}{4}
\end{aligned}
$$

D. I_{0}

Answer: A

- Watch Video Solution

9. A thin glass prism of $\mu=1.5$ is immersed in

water of $\mu=1.33$. The ratio of deviation of
the ray in water to that in air for the same prism is
A. $1: 4$
B. 1:2
C. 1:8
D. 1:3

Answer: A

D Watch Video Solution

10. The power factor of the following circuit will be

A. 0.2
B. 0.4
C. 0.6
D. 0.8

Answer: D
11. A uniform magnetic field existsin region
given by $\vec{B}=3 \hat{i}+4 \hat{j}+5 \hat{k}$. A rod of length
$5 m$ is placed along y-axis is moved along x axis with constant speed $1 \mathrm{~m} / \mathrm{sec}$. Then the magnitude of induced $e . m . f$ in the rod is:
A. zero
B. 25 V
C. 20 V
D. 15 V

Answer: B

- Watch Video Solution

12. Magnetic susceptibility of a paramagnetic
substance is
A. 0.003
B. 0.012
C. 0.018
D. 0.0045

Answer: B

- Watch Video Solution

13. A rectangular loop of metallic wire is of
length a and breadth b and carries a current i .
The magnetic field at the centre of the loop is
A. $\frac{\mu_{0} i}{4 \pi} \frac{8 \sqrt{a^{2}+b^{2}}}{a b}$
B. $\frac{\mu_{0} i}{4 \pi} \frac{4 \sqrt{a^{2}+b^{2}}}{a b}$
c. $\frac{\mu_{0} i}{4 \pi} \frac{2 \sqrt{a^{2}+b^{2}}}{a b}$
D. $\frac{\mu_{0} i}{4 \pi} \frac{\sqrt{a^{2}+b^{2}}}{a b}$

Answer: A

- Watch Video Solution

14. Resistance of 100Ω and 200Ω are connected in series with 220 V mains. When a voltmeter of 1000Ω resistance is connected in parallel to 100Ω, then the reading of voltmeter is
A. 82.5 volts
B. 6.87 volts
C. 587.5 volts
D. 58.75 volts

Answer: A

- Watch Video Solution

15. A conductor rod $A B$ moves parallel to X-axis
in a uniform magnetic field, pointing in the
positive Z-direction. The end A of the rod gets-

A. positively charged
B. negatively charged
C. neutral
D. first positively charged and then negatively charged

Answer: A

D Watch Video Solution

16. In a compound microscope, the focal
lengths of two lenses are 1.5 cm and 6.25 cm an object is placed at 2 cm form objective and the final image is formed at 25 cm from eye lens. The distance between the two lenses is

A. 6.00 cm

B. 7.75 cm
C. 9.25 cm

D. 11.00 cm

Answer: D

D Watch Video Solution

17. A freshly prepared radioactive source of half-life $2 h$ emits radiation of intensity which
is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is
A. 6 h
B. 12 h
C. 24 h
D. 128 h

Answer: D

D Watch Video Solution

18. Figure shows an infinite ladder network of resistances. The equivalent resistance between
points X and Y is

A. infinite
B. 3Ω
C. 8.62Ω
D. 1.62Ω

Answer: D

D Watch Video Solution
19. A coil of water of resistance 50Ω is embedded in a block of ice and a potential difference of 210 V is applied across it. The amount of ice which melts in 1 second is [latent heat of fusion of ice $=80 \mathrm{calg}^{-1}$]
A. 0.262 g
B. 2.62 g
C. 26.2 g
D. 0.0262 g

Answer: B

D Watch Video Solution

20. A small drop of water falls from rest
through a large height h in air, the final
velocity is
A. $\propto \sqrt{h}$
B. $\propto h$
C. $\propto\left(\frac{1}{h}\right)$
D. almost independent of h

Answer: D

D Watch Video Solution

21. Four point charge $q,-q, 2 Q$ and Q are placed in order at the corners $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D of a square. If the field at the midpoint of $C D$ is zero then the value of q / Q is $\frac{5 \sqrt{5}}{x}$. Find the value of x.
A. 1
B. 2
C. $\frac{2 \sqrt{2}}{5}$
D. $\frac{5 \sqrt{5}}{2}$

Answer: D

- Watch Video Solution

22. The electric potential V at any point (x, y, z)
in space is given by $V=4 x^{2} V$. The electric
field E (in $\frac{V}{m}$) at the point $(1,0,2)$ is
A. +8 in x direction
B. 8 in $-x$ direction
C. 16 in $+x$ direction
D. 16 in $-x$ direction

Answer: B

D Watch Video Solution

23. Two spheres A and B have diameters in the
ratio $1: 2$, densities in the ratio $2: 1$ and specific heat in the ratio $1: 3$. Find the ratio of their thermal capacities.
A. $1: 6$
B. 1: 12
C. $1: 3$
D. 1: 4

Answer: B

D Watch Video Solution

24. In the $P-V$ diagram shown in figure
$A B C$ is a semicircle. The work done in the
process $A B C$ is

A. zero
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. 4

Answer: B

D Watch Video Solution

25. A sphere and a cube of same material and
same total surface area are placed in the same
evaculated space turn by turn after they are heated to the same temperature. Find the ratio of their initial rates of cooling in the enclosure.

$$
\text { A. } \sqrt{\frac{\pi}{6}}: 1
$$

B. $\sqrt{\frac{\pi}{3}}: 1$
C. $\frac{\pi}{\sqrt{6}}: 1$
D. $\frac{\pi}{\sqrt{3}}: 1$

Answer: A

- Watch Video Solution

26. Two stationary soruces of sound, S_{1} and S_{2}
having an equal frequency are fixed some distance apart. The position A is left of S_{1}, position B in the middle of the two sources
and positionC is to the right of S_{2}. An observer starts moving with velocity V_{0} from position A towards S_{1}, then
A. beats for three position A, B and C will be heard
B. beats will be heard from A and C but not in case of B
C. beats will be not heard for A and C but
will be heard for B
D. beats will be not heard for three position of A, B and C

Answer: C
(D) Watch Video Solution

The displacement time graph for two sound waves A and B are shown in the figure. Then the ratio of their intensities I_{A} / I_{B} is equal to
A. 1:4
B. 1:16
C. 1:2

D. 1:1

Answer: D

D Watch Video Solution

28. A and B are two points on uniform metal ring whose centre is O The angle $A O B=\theta$ A and B are maintaind at two different constant temperatures When $\theta=180^{\circ}$ the rate of total heat flow from A to B is $1.2 W$ When $\theta=90^{\circ}$ this rate will be.
A. $0.6 W$
B. $0.9 W$
C. $1.6 W$
D. 1.8 W

Answer: C

D Watch Video Solution

29. The displacement of a particle (in meter)
from its mean position is given by the
equation $y=0.2\left(\cos ^{2} \frac{\pi t}{2}-\sin ^{2} \frac{\pi t}{2}\right)$, The motion of the above particle is
A. not simple harmonic
B. simple harmonic with amplitude 0.2 m
C. simple harmonic with the period double
that of a second's pendulum

D. simple harmonic with amplitude 0.4 m

Answer: B

D Watch Video Solution

30. The escape velocity from the earth is about
$11 \mathrm{~km} / \mathrm{s}$. The escape velocity from a planet having twice the radius and the twice mean density as the earth, is
A. $31.11 \mathrm{~km}^{-1}$
B. $11 k m s^{-1}$
C. $5.5 \mathrm{~km}^{-1}$
D. $15.5 \mathrm{kms}^{-1}$

Answer: A
31. A small block of super dense material has mass $2 \times 10^{24} \mathrm{~kg}$. It is at a height $h \ll R$. It
falls towards the earth.Find its speed when it is at a height $\frac{h}{2}$
A. $\sqrt{\frac{2 g h}{3}}$
B. $\sqrt{\frac{3 g h}{4}}$
C. $\sqrt{\frac{3 g h}{5}}$
D. $\sqrt{\frac{g h}{2}}$

Answer: B

- Watch Video Solution

32. The position vector of a particle is $\vec{r}=(3 \hat{i}+4 \hat{j})$ metre and its angular velocity $\vec{\omega}=(\hat{j}+2 \hat{k})$ rads $^{-1}$ then its linear velocity is (in $m s^{-1}$)
A. $-(8 \hat{i}-6 \hat{j}+3 \hat{k})$
B. $(3 \hat{i}+6 \hat{j}+8 \hat{k})$
C. $-(3 \hat{i}+6 \hat{j}+6 \hat{k})$

$$
\text { D. }(6 \hat{i}+8 \hat{j}+3 \hat{k})
$$

Answer: A

D Watch Video Solution

33. The rope shown in figure is wound around
a cylinder of mass 4 kg and moment of inertia
$0.02 \mathrm{kgm}^{2}$ about the cylinder axis. If the cylinder rolls without slipping, then the linear
acceleration of its centre of mass is.

A. $6.7 m s^{-2}$
B. $10.0 \mathrm{~ms}^{-2}$
C. $9.0 m s^{-2}$
D. none of these

Answer: A
34. A square of a side a is cut from a square of side 2 a as shown in the figure. Mass of this square with a hole is M. Then its moment of inertia about an axis passing through its centre of mass and perpendicular to its plane
will be

$$
\begin{aligned}
& \text { A. } \frac{M a^{2}}{6} \\
& \text { B. } \frac{2 M a^{2}}{6} \\
& \text { C. } \frac{4 M a^{2}}{6} \\
& \text { D. } \frac{5 M a^{2}}{6}
\end{aligned}
$$

Answer: D

D Watch Video Solution

35. Assuming that potential energy of spring is
zero when it is stretched by $\frac{x_{0}}{2}$, its potential energy when it is compressed by x_{0} is
A. $\frac{3}{8} k x_{0}^{2}$
B. $-\frac{3}{4} k x_{0}^{2}$
C. $\frac{3}{4} k x_{0}^{2}$
D. $\frac{1}{8} k x_{0}^{2}$

Answer: A

D Watch Video Solution

36. The solid rubber balls A and B having masses 200 and 400 gm respectively are moving in opposite directions with velocity of

A equal to $0.3 \mathrm{~m} / \mathrm{s}$. After collision the two
balls come to rest, then the velocity of B is
A. $0.15 m s^{-1}$
B. $-0.15 m s^{-1}$

C. $1.5 m s^{-1}$

D. none of these

Answer: B

D Watch Video Solution

37. A particle of mass 100 gm moves in a potential well given by $U=8 x^{2}-4 x+400$ joule. Find its acceleration at a distance of 25
cm from equilibrium in the positive direction
A. $4 m s^{-1}$
B. $40 m s^{-1}$
C. $-40 m s^{-1}$
D. $-4 m s^{-1}$

Answer: C

D Watch Video Solution

38. In the figure shown, the capacity of the condenser C is $2 \mu F$. The current in 2Ω resistor

A. 9 A
B. 0.9 A
C. $\frac{1}{9} A$
D. $\frac{1}{0.9} A$

Answer: B
39. A P-N junction diode connected to a battery of e.m.f. 4.5 V and an external resistance of 1000Ω. What is the value of current in the circuit, if potential barrier in the diode $=0.5 \mathrm{~V}$

A. 4 A
B. 4 mA
C. 5A
D. 5 mA

Answer: B

D Watch Video Solution
40. The circuit diagram (see fig.) shows a 'logic
combination' with the states outputs X, Y
and Z given for input P, Q, R and S all at
state 1 (i.e., high). When inputs P and R change to state 0 i.e., low) with inputs Q and S still at 1 , the condition of output X, Y and Z chages to

A. $X=0, Y=0, Z=0$
B. $X=1, Y=1, Z=1$
C. $X=0, Y=1, Z=0$

$$
\text { D. } X=1, Y=0, Z=0
$$

Answer: C

D Watch Video Solution

41. A solid sphere of radius R has charge q
uniformly distributed over its volume. The distance from it surfce at which the electrostatic potential is equal to half of the potential at the centre is
A. R
B. $\frac{R}{2}$
C. $\frac{R}{3}$
D. 2R

Answer: C

D Watch Video Solution

42. A particle of mass m and charge q is
thrown from a point in space where uniform gravitational field \& electric field are present.The particle

$\frac{\mathrm{q}, \mathrm{ma}}{0}$
 E

(1) may follow a straight line
(2) may follow a circular path
(3) may follow a parabolic apth
A. 1 \& 2 are correct
B. 1 \& 3 are correct
C. $2 \& 3$ are correct
D. all these are correct

Answer: B

D Watch Video Solution

43. In a potential meter arrangement shown in
fig. The balancing length for potential difference across X, Y points is found to be 45.5
cm . Then the balancing length for potential
difference across (Y) and (Z) would be

A. 45.50 cm
B. 56.87 cm
C. 36.40 cm
D. none of the above

- Watch Video Solution

44. Two charged particle M and N are projected with same velocity in a uniform magnetic field. Then M and N respectively.

A. an electron and a proton
B. a deuteron and a photon
C. a deuteron and an electron
D. a proton and α particle

Answer: D

D Watch Video Solution
45. The average radius of an air cored made toroid is 0.1 m and it has 500 turns. If it carries
0.5 ampere current, then the magnetic field inside it is :

A. 5×10^{-4}
B. 5×10^{-3}
C. 5×10^{-2}
D. 2×10^{-3}

Answer: A
(Watch Video Solution

