đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NEET MOCK TEST 21

Physics

1. The angular velocity of a body is
$\vec{\omega}=2 \hat{i}+3 \hat{j}+4 \hat{k} \quad$ and \quad a torque
$\vec{\tau}=\hat{i}+2 \hat{j}+3 \hat{k}$ acts on it. The rotational power will be
A. 20 W
B. 15 W
C. $\sqrt{17} W$
D. $\sqrt{14} W$

Answer: A
(Watch Video Solution
2. The potential energy of a particle of mass 5
kg moving in the $x-y$ plane is given by
$U=(-7 x+24 y) J$, where x and y are given
in metre. If the particle starts from rest, from
the origin, then the speed of the particle at
$t=2 \mathrm{~s}$ is
A. $5 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $14 \mathrm{~m} / \mathrm{s}$
D. $17.5 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

3. If the friction is sufficient to prevent the block from sliding, then the minimum value of

F for which the cube begins to topple about
an edge is

A. $\frac{2}{3} m g$

$$
\begin{aligned}
& \text { B. } \frac{3}{4} m g \\
& \text { C. } \frac{1}{2} m g \\
& \text { D. } m g
\end{aligned}
$$

Answer: B

D Watch Video Solution

4. A uniform cylinder rolls down from rest, on
a track whose vertical cross - section is a parabola given by the equation $y=k x^{2}$. If the
surface is rough from A to B due to which the
cylinder doesn't slip but it is frictionless from
B to C, then the height of ascent of cylinder towards C is

A. $\frac{y_{1}}{3}$
B. $\frac{2 y_{1}}{3}$
C. $\frac{3 y_{1}}{2}$
D. y_{1}

Answer: B

D Watch Video Solution

5. A magnetic dipole is situated in the direction of a magnetic field. What is its potential energy? If it is rotated by 180°, then what amount of work will be done?
A. MB
B. 2 MB
C. -2 MB
D. zero

Answer: D

D Watch Video Solution

6. A projectile is thrown with a velocity of 20 m / s, at an angle of 60° with the horizontal.

After how much time the velocity vector will
make an angle of 45° with the horizontal (in upward direction) is (take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$) -
A. $\sqrt{3} s$
B. $\frac{1}{\sqrt{3}} s$
C. $(\sqrt{3}+1) s$
D. $(\sqrt{3}-1) s$

Answer: D

D Watch Video Solution

7. A sample contains large number of nuclei.

The probability that a nucleus in sample will decay after four half lives is

> A. $\frac{1}{4}$
> B. $\frac{3}{4}$
> C. $\frac{15}{16}$
> D. $\frac{7}{16}$

Answer: C

- Watch Video Solution

8. Photoelectric emission is observed from a metallic surface for frequencies v_{1} and v_{2} of the incident light rays $\left(v_{1}>v_{2}\right)$. If the maximum values of kinetic energy of the photoelectrons emitted in the two cases are in the ratio of $1: k$, then the threshold frequency of the metallic surface is
A. $\frac{n_{1}-n_{2}}{k-1}$
B. $\frac{k n_{1}-n_{2}}{k-1}$
C. $\frac{k n_{2}-n_{1}}{k-1}$

$$
\text { D. } \frac{n_{2}-n_{1}}{k}
$$

Answer: B

D Watch Video Solution

9. In a compound microscope, the focal
lengths of two lenses are 1.5 cm and 6.25 cm an object is placed at 2 cm form objective and the final image is formed at 25 cm from eye lens. The distance between the two lenses is
A. 6.00 cm
B. 7.75 cm
C. 9.25 cm
D. 11.00 cm

Answer: D

- Watch Video Solution

10. When a ray is refracted from one medium
into another, the wavelegths changes from $6000 \AA$ to $4000 \AA$. The critical angle for a ray from the second medium will be
A. $\cos ^{-1}\left(\frac{2}{3}\right)$
B. $\sin ^{-1}\left(\frac{2}{3}\right)$
C. $\tan ^{-1}\left(\frac{3}{2}\right)$
D. $\sin ^{-1}\left(\frac{2}{\sqrt{13}}\right)$

Answer: B

D Watch Video Solution

11. A 100 V a.c. source of frequency 500 Hz is connected to a $L C R$ circuit with $L=8.1$
millihenry, $C=12.5 \mu F$ and $R=10$ ohm, all connected in series. What is the potential difference across the resistance?
A. 100 V
B. 200 V
C. 300 V
D. 400 V

Answer: A

D Watch Video Solution
12. A rod of length I rotates with a small but uniform angular velocity ω about its perpendicular bisector. A uniform magnetic field B exists parallel to the axis of rotation. The potential difference between the centre of the rod and an end is
A. zero
B. $\frac{1}{2} \omega B l^{2}$
C. $\omega B l^{2}$
D. $2 \omega B l^{2}$

Answer: A

- Watch Video Solution

13. In the figure, which of the diode is in
reverse bias

Answer: B

- Watch Video Solution

14. In the figure shown below each battery has emf $=5 \mathrm{~V}$. Then the magnetic field at P is

A. zero
B. $\frac{10 \mu_{0}}{R_{1}(4 \pi)(.2)}$
C. $\frac{20 \mu_{0}}{R_{1}+R_{2}(.8 \pi)}$
D. none of these

Answer: A
15. Two long parallel wires are 30 cm apart carrying currents 10 A and 15 A respectively in
the same direction. The force acting over a length of 5 m of the wires is
A. $5 \times 10^{-4} N, \quad$ (attraction)
B. $1 \times 10^{-4} N, \quad$ (attraction)
C. $5 \times 10^{-4} N, \quad$ (repulsion)
D. $1 \times 10^{-4} N, \quad$ (repulsion)
16. The resistance of a moving coil galvanometer is 20Ω. It requires 0.01 A current for full - scale deflection. The value of resistance to convert it into a voltmeter of the range 20 V will be
A. 198Ω
B. 1980Ω
C. 20Ω
D. 0Ω

Answer: B

D Watch Video Solution

17. Consider the situation shown in the figure.

The wire $A B$ is sliding on the fixed rails with a
constant velocity. If the wire $A B$ is replaced by
semicircular wire, the magnitude of the
induced current will

A. increase
B. remain the same
C. decrease
D. increase of decrease depending on
whether the semicircle bulges towards
the resistance or away from it

Answer: B

D Watch Video Solution

18. The coefficient of friction between two
surface is 0.2. The maximum angle of friction is
A. $\sin ^{-1}(0.2)$
B. $\cos ^{-1}(0.2)$
C. $\tan ^{-1}(0.1)$

$$
\text { D. } \cot ^{-1}(5)
$$

Answer: D

D Watch Video Solution

19. The ratio of thermal conductivity of two
rods of different material is $5: 4$. The two rods
of same area of cross-section and same thermal resistance will have the lengths in the ratio
A. $4: 5$
B. 9:1
C. 1:9
D. 5: 4

Answer: D

D Watch Video Solution

20. A dielectric slab is inserted between the
plates of an isolated capacitor. The force between the plates will
A. increase
B. decrease
C. remain unchanged
D. become zero

Answer: C

D Watch Video Solution

21. The effective capacitance of two capacitors
of capacitances C_{1} and $C_{2}\left(C_{2}>C_{1}\right)$
connected in parallel is $\frac{25}{6}$ times the effective
capacitance when they are connected in series.
The ratio $\frac{C_{2}}{C_{1}}$ is

$$
\begin{aligned}
& \text { A. } \frac{3}{2} \\
& \text { B. } \frac{4}{3} \\
& \text { C. } \frac{5}{3} \\
& \text { D. } \frac{25}{6}
\end{aligned}
$$

Answer: A

D Watch Video Solution
22. A particale moves under the effect of a
force $F=C s$ from $x=0$ to $x=x_{1}$. The work down in the process is
A. $c x_{1}^{2}$
B. $\frac{1}{2} c x_{1}^{2}$
C. $c x_{1}^{3}$
D. zero

Answer: B

D Watch Video Solution
23. Root mean square speed of an ideal gas at

300 K is $500 \mathrm{~m} / \mathrm{s}$. Temperature is increased
four times then root mean square speed will become
A. $1000 \mathrm{~m} / \mathrm{s}$
B. $560 \mathrm{~m} / \mathrm{s}$
C. $2000 \mathrm{~m} / \mathrm{s}$
D. none of these

Answer: A
24. When a laser beam returns after reflection
from an aeroplane, the observed change in
frequency is 1%, then the speed of the aeroplane is (c is the velocity of light)
A. $\frac{c}{50}$
B. $\frac{c}{100}$
C. $\frac{c}{200}$
D. $\frac{c}{2}$

Answer: C

D Watch Video Solution

25. A ring consisting of two parts $A D B$ and
$A C B$ of same conductivity k carries an amount of heat H The $A D B$ part is now replaced with another metal keeping the temperature T_{91}) and T_{2} constant The heat carried increases to $2 H$ What should be the conductivity of the new $A D B$ Given
$A C B$
$A D B=3$

A. $\frac{7}{3} K$
B. $2 K$
C. $\frac{5}{2} K$
D. 3 K

Answer: A

D Watch Video Solution

26. The period of oscillation of a simple pendulum of length (L) suspended from the roof of a vehicle which moves without friction down an inclined plane of inclination (prop), is given by.

$$
\begin{aligned}
& \text { A. } 2 \pi \sqrt{\frac{L}{g \cos \alpha}} \\
& \text { B. } 2 \pi \sqrt{\frac{L}{g \sin \alpha}}
\end{aligned}
$$

C. $2 \pi \sqrt{\frac{L}{g}}$
D. $2 \pi \sqrt{\frac{L}{g \tan \alpha}}$

Answer: A

- Watch Video Solution

27. Potential energy of a 3 kg body at the
surface of a planet is $-54 J$, then escape velocity will be :
A. $18 m s^{-1}$
B. $162 m s^{-1}$
C. $36 m s^{-1}$
D. $6 m s^{-1}$

Answer: D

D Watch Video Solution

28. A projectile is fired vertically upwards from
the surface of the earth with a velocity $K v_{e}$,
where v_{e} is the escape velocity and $K<1$.If R
is the radius of the earth, the maximum height
to which it will rise measured from the centre

of the earth will be (neglect air resistance)

$$
\begin{aligned}
& \text { A. } \frac{R}{k^{2}+1} \\
& \text { B. } \frac{k^{2} R}{1-k^{2}} \\
& \text { C. } \frac{R}{1-k^{2}} \\
& \text { D. } \frac{k^{2} R}{k^{2}+1}
\end{aligned}
$$

Answer: C

D Watch Video Solution

29. A uniform bar of length 6 a and mass 8 m
lies on a smooth horizontal table. Two pointmasses m and $2 m$ moving in the same horizontal plane with speeds $2 v$ and v respectively strike the bar as shown in Fig, and stick to the bar after collision.

A. zero
B. $\frac{2 v}{3 a}$
C. $\frac{v}{5 a}$
D. $\frac{3 v}{5 a}$

Answer: C

D Watch Video Solution
30. When induced $e m f$ in inductor coil is
50% of its maximum value then stored energy in inductor coil in the given circuit at
that instant will be:-

A. 2.5 mJ
B. 5 mJ
C. 15 mJ
D. 20 mJ

Answer: A

D Watch Video Solution

31. The magnetic flux through a coil varies with
time as $\phi=5 t-6 t+9$. The ratio of E.M.F. at
$t=0 s$ to $t=0.5 s$ will be
A. $9: 1$
B. $1: 6$
C. $6: 1$
D. $1: 9$

- Watch Video Solution

32. Specific resistance of a wire depends on its
A. length of the wire
B. area of cross - section of the wire
C. resistance of the wire
D. material of the wire
33. What is the ratio of the electrostatic potential at the corner and the centre point of a charged conducting cube? (The potential is considered 0 at infinity)
A. 2:1
B. $4: 1$
C. 1:2
D. 1:1

Answer: D

- Watch Video Solution

34. The work done by all the forces (external
and internal) on a system equals the change in
A. total energy
B. kinetic energy
C. potential energy
D. none of these

Answer: B

- Watch Video Solution

35. The potential energy of a body mass m is
$U=a x+b y$ the magnitude of acceleration
of the body will be-

> A. $\frac{a b}{m}$
> B. $\left(\frac{a+b}{m}\right)$
> C. $\frac{\sqrt{a^{2}+b^{2}}}{m}$
> D. $\frac{a^{2}+b^{2}}{m}$

Answer: C

- Watch Video Solution

36. A ball of mass 1 kg moving with a velocity of $0.4 \mathrm{~ms}^{-1}$ collides with another stationary ball. After the collision, the first ball moves with a velocity of $0.3 m s^{1}$ in a direction making an angle of 90° with its initial direction. The momentum of the second ball after the collision will be (in $\mathrm{kg} \mathrm{ms}{ }^{-1}$)
A. 0.1
B. 0.3
C. 0.5
D. 0.7

Answer: C

D Watch Video Solution

37. An inteference is observed due to two coherent sources A and B separated by a distance 4λ along Y-axis, where λ is the
wavelength of light. A detector ' D ' is moved alog the positive X -axis. Find the totla number of maxima observe on the X -axis excluding the points $x=0$ and $x=\infty$?

A. three
B. four
C. two
D. infinite

Answer: A

D Watch Video Solution

38. A convex lens A of focal length 20 cm and a
concave lens G of focal length 5 cm are kept
along the same axis with the distance d between them. If a parallel beam of light falling on A leaves B as a parallel beam, then distance d in cm will be
A. 20
B. 15
C. 30
D. 50

Answer: B

D Watch Video Solution

39. A variable force F acts along the x - axis
given by $F=\left(3 x^{2}\right)-2 x+1 N$. The work done by the force when a particle of mass 100 g moves from $x=50 \mathrm{~cm}$ to $x=100 \mathrm{~cm}$ is
A. 0.625 J
B. 6.25 J
C. 0.0625 J
D. 62.5 J

Answer: A

D Watch Video Solution

40. Two blocks of masses m and 2 m are placed one over the other as shown in figure.The coefficient of friction between m and 2 m is μ
and between 2 m and ground is $\frac{\mu}{3}$. If a horizontal force F is applied on upper block and T is tension developed in string, then choose the incorrect alternative.

A. If $F=\frac{\mu}{2} m g, T=0$
B. If $F=\mu m g, T=0$
C. If $F=2 \mu m g, T=\frac{\mu m g}{3}$
D. If $F=3 \mu m g, T=0$

Answer: C

- Watch Video Solution

41. According to Bohr's theory, the time averaged magnetic field at the centre (i.e. nucleus) of a hydrogen atom due to the motion of electrons in the $n^{\text {th }}$ orbit is proportional to :
($\mathrm{n}=$ principal quantum number)

$$
\text { A. } \frac{1}{n^{3}}
$$

B. $\frac{1}{n^{5}}$
C. n^{5}
D. n^{3}

Answer: B

- Watch Video Solution

42. The half - life of a radioactive substance is

50 days. The substance will disintegrate completely in
A. 50 days
B. 500 days
C. 5000 days
D. infinite time

Answer: D

- Watch Video Solution

43. Which of the following curves is correct?

$$
\underset{\mathrm{Z}}{\sqrt{v}}
$$

A.

C.
D. None of these

Answer: A

D Watch Video Solution
44. A simple telescope, consisting of an objective of focal length 60 cm and a single eye lens of focal length 5 cm is focussed on a distant object in such a way that parallel rays comes out from the eye lens. If the object subtends an angle 2° at the objective, the angular width of the image
A. 50°
B. $\left(\frac{1}{6}\right)^{\circ}$
C. 10°

D. 24°

Answer: D

D Watch Video Solution

45. An equilateral prism produces a minimum deviation of 30°. The angle of incidence is
A. 120°
B. 60°
C. 90°

D. none of these

Answer: B

D Watch Video Solution

