©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NEET MOCK TEST 5

Physics Single Choice

1. Two bodies of masses 10 kg and 100 kg are seperated by a distance of 2 m . The
gravitational potential at the mid-point of the
line joining the two bodies is:

$$
\begin{aligned}
& \text { A. }-7.3 \times 10^{-7} \mathrm{~J} / \mathrm{kg} \\
& \text { B. }-7.3 \times 10^{-8} \mathrm{~J} / \mathrm{kg} \\
& \text { C. }-7.3 \times 10^{-9} \mathrm{~J} / \mathrm{kg} \\
& \text { D. }-7.3 \times 10^{-6} \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

Answer: C

D Watch Video Solution

2. A convex lens is dipped in a liquid whose refractive index is equal to the refractive of the lens. Then its focal length will
A. decrease
B. become zero
C. become infinite
D. remain the same

Answer: C

D Watch Video Solution
3. After perfectly inelastic collision between two identical balls moving with same speed in different directions, the speed of the combined mass becomes half the initial speed.

Find the angle between the two before collision.
A. 60°
B. 45°
C. 120°
D. 30°

Answer: C

D Watch Video Solution

4. The wavelength of maximum energy released during an atomic axplosion was $2.93 \times 10^{-10} \mathrm{~m}$. Given that Wien's constant is $2.93 \times 10^{-3} m-K, \quad$ the maximum
temperature attained must be of the order of
A. $10^{-7} K$
B. $10^{7} K$
C. $10^{-3} K$
D. $5.86 \times 10^{7} K$

Answer: B

D Watch Video Solution

5. A bob of mass m is tied with a thread and is
made to move in a circular path on a
frictionless table surface about point ' O ' as
shown in diagram. A hypothetical electric field
in radial direction exists along the table
surface. In this condtion the bob is uncharged and tension is thread is T. If bob is given some charge-

A. Tension in thread must increase
B. Tension in thread may increase or decrease

C. Tension in thread will remain unchanged

D. Tension in thread must decrease

Answer: B

D Watch Video Solution

6. Consider the situation shown in the figure.

The wall is smooth but the surface of blocks A and B in contact are rough. The friction of B

due to A in equilibrium

A. Is upward
B. Is downward
C. Is zero
D. The system cannot remain in equilibrium
for any value of F

Answer: A

D Watch Video Solution

7. An engine is attahed to a wagon through a shock absorber of length 1.5 m . The system with a total mass of $50,000 \mathrm{~kg}$ is moving with a speed of $36 \mathrm{kmh}^{-1}$ when the brakes are applied to bring it to rest. In the process of the system being brought to rest, the spring of the shock absorber gets compressed by
1.0 m . If 90% of energy of the wagon is lost due to friction, calculate the spring constant.
A. $5.0 \times 10^{5} \mathrm{~N} / \mathrm{m}$
B. $4.0 \times 10^{5} \mathrm{~N} / \mathrm{m}$
C. $1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}$
D. $2.0 \times 10^{5} \mathrm{~N} / \mathrm{m}$

Answer: A

D Watch Video Solution

8. If R_{1} and R_{2} are the resistances of the
filaments of 200 W and 100 W electric bulbs operated at 220 V , then $\left(\frac{R_{1}}{R_{2}}\right)$ is
A. 2
B. 0.5
C. 4
D. 0.25

Answer: B

D Watch Video Solution
9. If N_{0} is the original mass of the substance
of half - life period $t_{1 / 2}=5 y e a r$ then the amount of substance left after 15 year is

$$
\begin{aligned}
& \text { A. } \frac{N_{0}}{8} \\
& \text { B. } \frac{N_{0}}{16} \\
& \text { C. } \frac{N_{0}}{2} \\
& \text { D. } \frac{N_{0}}{4}
\end{aligned}
$$

Answer: A

D Watch Video Solution
10. A mass of 2 kg is attached to the spring of spring constant $50 \mathrm{Nm}^{-1}$. The block is pulled to a distance of 5 cm from its equilibrium position at $x=0$ on a horizontal frictionless
surface from rest at $\mathrm{t}=0$. Write the expression
for its displacement at anytime t.
A. $5 \sin (5 t+\pi / 2)$
B. $\sin (5 t+\pi / 2)$
C. $5 \sin (5 t+3 \pi / 2)$
D. $5 \sin (t+\pi / 2)$

Answer: A

- Watch Video Solution

11. A vehicle of mass m is moving on a rough
horizontal road with momentum p. If the coefficient of friction between the tyres and the road be μ, then the stopping distance is:

$$
\begin{aligned}
& \text { A. } \frac{p}{2 \mu m g} \\
& \text { B. } \frac{p^{2}}{2 \mu m g} \\
& \text { C. } \frac{p}{2 \mu m^{2} g}
\end{aligned}
$$

D. $\frac{p^{2}}{2 \mu m^{2} g}$

Answer: D

- Watch Video Solution

12. Two coherent point sources S_{1} and S_{2} are separated by a small distance d as shown. The
fringes obtained on the screen will be

A. semi-circles
B. Concentric circles
C. points
D. straight lines

Answer: B

- Watch Video Solution

13. In the figure shown below, an ideal gas is
carried around the cyclic process. How much
work is done in one cycle if
$P_{0}=8 a t m$ and $V_{0}=7.00$ litre?

A. 5656 J
B. $-5656 J$
C. 10600 J
D. 11300 J

Answer: B

D Watch Video Solution

14. One litre of oxygen at a pressure of 1 atm and two litres of nitrogen at a pressure of 0.5
atm are introduced into a vessel of volume 1
litre. If there is no change in temperature, the
final pressure of the mixture of gas (in atm) is
A. 1.5
B. 2.5
C. 2
D. 4

Answer: C

D Watch Video Solution

15. A coil having 200 turns has a surface area of $0.15 \mathrm{~m}^{2}$. A magnetic field of strength $0.2 T$ applied perpendicular to this changes to $0.6 T$ in $0.4 s$, then the induced emf in the coil is

A. 45
B. 30
C. 15
D. 60

Answer: B

D Watch Video Solution

16. A jet water, whose cross section is A strikes
a wall making an angle θ with normal and elastically rebounds. The velocity of water of
density ρ is v. Force exerted on wall is :-

A. $2 A v^{2} \rho$
B. $A v^{2} \rho$
C. $2 A v^{2} \rho \sin \theta$
D. $2 A v^{2} \rho \cos \theta$

Answer: D

- Watch Video Solution

17. A sound wave of frequency f propagating
through air with a velocity c, is reflected from
a surface which is moving away from the source with a constant speed v. Find the frequency of the reflected wave, measured by the observer at the position of the source.

$$
\text { A. } \frac{f(c-v)}{c+v}
$$

B. $\frac{f(c-v)}{c-v}$
C. $\frac{f(c+2 v)}{c+v}$
D. $\frac{f(c-v)}{c-2 v}$

Answer: A

- Watch Video Solution

18. Two men A and B are carrying a uniform
bar of length L on their shoulders. The bar is
held horizontally such that A gets one-fourth
load. If A is at one end of the bar, the distance
of B from that end is

$$
\begin{aligned}
& \text { A. } \frac{L}{3} \\
& \text { B. } \frac{L}{4} \\
& \text { C. } \frac{2 L}{3} \\
& \text { D. } \frac{3 L}{4}
\end{aligned}
$$

Answer: A
(Watch Video Solution
19. A body is falling under gravity. When it
loses a gravitational potential energy U, its
speed is v. The mass of the body shell be
A. $2 U / v^{2}$
B. $2 v / U^{2}$
C. $2 v / U$
D. $U^{2} / 2 v$

Answer: A

D Watch Video Solution

20. Dimensional formula of magnetic field is :-

A. $\left[M T^{-2} A^{-1}\right]$
B. $\left[M L^{2} T^{-1} A^{-2}\right]$
C. $\left[M T^{-2} A^{-2}\right]$
D. $\left[M T^{-1} A^{-2}\right]$

Answer: A
21. Two particles are projected simultaneously
in the same vertical plane, with speed u_{1} and
u_{2} at angle of projection θ_{1} and θ_{2} respectively with the horizontal. The path
followed by one, as seen by other (as long as
both are in flight), is
A. a vertical line
B. a parabola
C. a hyperbola

D. a straight line making a constant angle

with the horizontal

Answer: D

D Watch Video Solution

22. The diagram of a logic circuit is given below. The output F of the circuit is
represented by

A. $P+R \cdot Q$
B. $P \cdot(R \cdot Q)$
C. $P \cdot(R+Q)$
D. $P+(R+Q)$

Answer: A
23. A fully charged capacitor has a capacitance
C. It is discharged through a small coil of resistance wire embedded in a thermally insulated block of specific heat capacity s and mass m. If the temperature of the block is raised by ΔT, the potential difference V across the capacitance is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2 m s \Delta T}{8}} \\
& \text { B. } \frac{m s \Delta T}{8}
\end{aligned}
$$

> c. $\frac{m s \Delta T}{C}$
> D. $\sqrt{\frac{2 m s \Delta T}{C}}$

Answer: D

D Watch Video Solution

24. The instantaneous current and volatage of an AC circuit are given by
$i=10 \sin (314 t) A$ and $V=100 \sin (314 t) V$
What is the power dissipation in the circuit?

A. 1000 W

B. 500 W
C. 300 W
D. 200 W

Answer: B

D Watch Video Solution
25. An object is approaching a convex lens of focal length 0.3 m with a speed of $0.01 \mathrm{~ms}^{-1}$.

Find the magnitudes of the ratio of change of
position and lateral magnification of image
when the object is at a distance of 0.4 m from
the lens
A. 0.3
B. 0.6
C. 0.15
D. -0.3

Answer: A

D Watch Video Solution
26. A bimetallic is made of two strips A and B
having coefficients of linear expansion
α_{4} and α_{B}. If $\alpha_{A}<\alpha_{B}$, then on heating, the
strip will
A. Bend with A on outer side
B. Bend with B on outer side
C. Not bend at all
D. None of the above

Answer: B

- Watch Video Solution

27. A wire of natural length l, young's modulus Y and area of cross-section A is extended by x.

Then, the energy stored in the wire is given by

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \frac{Y A}{l} x^{2} \\
& \text { B. } \frac{1}{3} \frac{Y A}{l} x^{2} \\
& \text { C. } \frac{1}{2} \frac{Y l}{A} x^{2} \\
& \text { D. } \frac{1}{2} \frac{A}{Y l} x^{2}
\end{aligned}
$$

Answer: A

28. A copper disc of radius 0.1 m is roated about its centre with 20 revolutions per second in a uniform magnetic field of 0.1 T with its plane perpendicular the field. The emf induced across the radius of disc is
A. $\frac{\pi}{20}$ volt
B. $\frac{\pi}{10}$ volt
C. 20π millivolt
D. 100π millivolt

Answer: C

- Watch Video Solution

29. Figure shows the acceleration-time graphs
represents the corresponding velocity -time

graph?

A.

Answer: B
30. A single slit of width b is illuminated by a coherent monochromatic light of wavelength
λ. If the second and fourth minima in the diffraction pattern at a distance 1 m from the slit are at 3 cm and 6 cm respectively from the central maximum, what is the width of the central maximum ? (i.e., distance between first minimum on either side of the central maximum)
A. 4.5 cm

B. 1.5 cm

C. 6.0 cm
D. 3.0 cm

Answer: D

D Watch Video Solution

31. A given quantity of a ideal gas is at pressure P and absolute temperature T . The isothermal bulk modulus of the gas is
A. $\frac{2}{3} P$
B. P
C. $\frac{3}{2} P$
D. $2 P$

Answer: B

D Watch Video Solution

32. The radiation emitted by a star A is 10,000
times that of the sun. If the surface temperatures of the sun and the star A are

8000 K and 2000 K respectively. The ratio of the radii of the star A and the sun is
A. 1600: 1
B. $1800: 1$
C. $16: 1$
D. 25: 1

Answer: A
(Watch Video Solution
33. How many times larger is the spacing between the energy levels with $\mathrm{n}=3$ and $\mathrm{n}=4$,then the spacing between the energy levels with $n=8$ and $n=9$ for a hydrogen like atom or ion?
A. 0.71
B. 0.41
C. 2.43
D. 14.82

Answer: B

34. In the following, which one of the diodes is

reverse biased ?

D.

Answer: A

D Watch Video Solution

35. A bar magnet suspended in magnetic meridian executes oscillations with a time period of 2 sec in the earth's horizontal magnetic field of 24 microtesla. When a horizontal field of 18 microtesla is produced opposite to the earth's field by placing a
current carrying wire, the new time period of magnet will be:
A. 1 s
B. 2 S
C. 3 S
D. 4 s

Answer: D
(Watch Video Solution
36. Three cells of emf 1 V and iternal resistance
1Ω each are connected as shown. Effective emf of combination between the points P and Q is-
A. Zero
B. 1 V
C. 2 V
D. $\frac{2}{3} V$

Answer: A

D Watch Video Solution

An elevator is going up. The variation in the
velocity of the elevator is as given in the graph. What is the height to which the elevator takes the passenger?
A. 3.6 m
B. 28.8 m
C. 36.0 m

D. 32.4 m

Answer: C

D Watch Video Solution

38. When the angle of incidence on a material
is 60°, the reflected light is completely polarized. The velocity of the refracted ray inside the material is (in $m s^{-1}$)
A. 3×10^{8}
B. $\left(\frac{3}{\sqrt{2}}\right) \times 10^{8}$
C. $\sqrt{3} \times 10^{8}$
D. 0.5×10^{8}

Answer: C

D Watch Video Solution

39. When monochromatic radiation of intensity I falls on a metal surface, the number of photoelectrons and their maximum kinetic are N and T respectively. If the intensity of
radiation is 2 l , the number of emitted electrons and their maximum kinetic energy are respectively.
A. N and 2 T
B. 2 N and T
C. 2 N and 2 T
D. N and T

Answer: B

D Watch Video Solution
40. A transformer of efficiency 90% has turns ratio $10: 1$. If the voltage across the primary is

220 V and current in the primary is 0.5 A , then
the current in secondary is
A. 5.5 A
B. $5 A$
C. $4 A$
D. 4.5 A

Answer: D

D Watch Video Solution
41. Three particles start from the origin at the same time, one with a velocity v_{1} along the x axis, second along the negative y-axis with a
velocity v_{2} and third particle moves along the
line $x=y$. The velocity of third particle, so that three may always lie on the same line is:
A. $\frac{v_{1}+v_{2}}{2}$
B. $\sqrt{v_{1}+v_{2}}$
C. $\frac{v_{1} v_{2}}{v_{1}+v_{2}}$
D. $v=\frac{\sqrt{2} v_{1} v_{2}}{v_{1}-v_{2}}$

Answer: D

D Watch Video Solution

42. A laser beam is sent to the moon and reflected back to earth by a mirror placed on the moon by an astronaut. If the moon is at 3,84,000 km distance from earth, how long does it take the light to make the round trip?
A. 5 min
B. 2.5 min
C. 2.5 s
D. 500 s

Answer: C

D Watch Video Solution

43. The wheel of a toy car rotates about a fixed axes. It slows down from 400 rps to 200 rps in 2 s . Then, its angular retardation in $\mathrm{rad} \mathrm{s}^{-2}$ is
(rps = revolutions per second)
A. 200π
B. 100π
C. 400π
D. None of these

Answer: A

D Watch Video Solution

44. The resultant of two vectors at right angles is 5 N . If the angle between them is
120° and the resultant is $\sqrt{13}$ then the magnitude of vectors are
A. $\sqrt{12} N, \sqrt{13} N$
B. $\sqrt{20} N, \sqrt{5} N$
C. $3 N, 4 N$
D. $\sqrt{40} N, \sqrt{15} N$

Answer: C
(Watch Video Solution
45. An electron having kinetic energy 10 eV is circulating in a path of radius 0.1 m in an external magnetic field of intensity $10^{-4} \mathrm{~T}$. The speed of the electron will be
A. $2 \times\left(10^{6}\right) m s^{-1}$
B. $4.8 \times\left(10^{6}\right) \mathrm{ms}^{-1}$
C. $2.0 \times\left(10^{12}\right) m s^{-1}$
D. $4.8 \times\left(10^{12}\right) m s^{-1}$

Answer: A

