©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NEET MOCK TEST 9

Physics

1. Consider the following statements and state
whether true (T) or false (F) :
(i) Nuclear fission is normaly followed by
emission of β^{-}- particles.
(ii)Emission of $\alpha-$ particle is normally
followed by emission of $\gamma-$ rays
(iii) As the mass number A increases, the binding energy per nucleon in a nucleus also increaes

Choose the correct order from the options given below
A. TTT
B. T T F
C. F T T

D. T F T

Answer: B

D Watch Video Solution

2. The electrical conductivity of semicondutor
increases when electromagnetic radiation of wavelength shorter than $24800 \AA$ is incident on it. The band gap for the semiconductor is
A. 0.9 ev
B. 0.7 Ev
C. 0.5 eV
D. 1.1 eV

Answer: C

D Watch Video Solution

3. A freshly prepared radioactive source of half-life $2 h$ emits radiation of intensity which is 64 times the permissible safe level. The
minimum time after which it would be possible to work safely with this source is
A. 6 h
B. 12 h
C. 24 h
D. 128 h

Answer: B
(Watch Video Solution
4. A photon of energy 10.2 eV collides inelastically with a stationary hydrogen atom in the ground state. After a time interval of the order of a microsecond, another photon collides with energy of 15 eV . What will be observed by the detector?
A. one photon of energy 10.2 eV and an electron having energy 1.4 eV
B. two photons of energy 1.4 eV
C. two photons of energy 10.2 eV

D. one photon of energy 10.2 eV and

another photon of 1.4 eV

Answer: A

- Watch Video Solution

5. The square root of the product of inductance and capacitance has the dimension of
A. length
B. mass
C. time
D. frequency

Answer: C

D Watch Video Solution

6. In a fixed quarter circular track of radius R which lies in a vertical plane, a block is released from point A and it leaves the path at point B. The radius of curvature of its
trajectory when it just leaves the path will be

A. R
B. $\frac{R}{4}$
C. $\frac{R}{2}$
D. None of these

Answer: C

- Watch Video Solution

7. For a diamagnetic substance, susceptibility
is
A. small and positive
B. small and negative
C. large and positive
D. large and negative

Answer: B

- Watch Video Solution

8. The potentiometer wire is of length 1200
cam and it carries a current of 60 mA . For a cell of emf 5 V and internal resistance of 20Ω,
the null point of it is found to be at 1000 cm .The resistance of potentiometer wire is
А. 60Ω
B. 120Ω

C. 100Ω

D. 80Ω

Answer: C

D Watch Video Solution

9. In the figure shown $R=100 \Omega, L=\frac{2}{\pi} H$ and $C=\frac{8}{\pi} \mu F$ are connected in series with a.c source of 200 volt and frequency ' f '. V_{1} and V_{2} are two hot-wire voltmeters. If the
readings of V_{1} and V_{2} are same then:

A. $f=125 \mathrm{~Hz}$
B. $f=250 \pi \mathrm{~Hz}$
C. current through R is $2 A$
D. $V_{1}=V_{2}=1000$ volt

Answer: B
10. Calculate the power factor of the circuit shown in figure

A. 0.2
B. 0.4
C. 0.8
D. 0.6

Answer: C

D Watch Video Solution

11. If the radius of the earth becomes half of its present value (mass remaining the same), the new length of the day would be
A. 6 hours
B. 12 hours
C. 48 hours
D. 96 hours

Answer: A

D Watch Video Solution

12. A diatomic gas is used in car not heat engine having efficiency 80%. Find the ratio of initial volume to final volume of gas during adiabatic expansion.
A. $\left(\frac{1}{5}\right)^{\frac{3}{2}}$
B. $\left(\frac{1}{3}\right)^{\frac{5}{2}}$
C. $\left(\frac{1}{5}\right)^{\frac{5}{2}}$
D. $\left(\frac{1}{5}\right)^{\frac{2}{5}}$

Answer: C

- Watch Video Solution

13. A steel ball strikes a fixed smooth steel plate placed on a horizontal surface atan
angle θ with the vertical. If the coefficient of restitution is e, the angle at which the rebound will take place is:
A. θ
B. $\tan ^{-1}\left[\frac{\tan \theta}{e}\right]$
C. $e \tan \theta$
D. $\tan ^{-1}\left[\frac{e}{\tan \theta}\right]$

Answer: B

D Watch Video Solution
14. A particle A of charge $1 \mu C$ is held fixed at a point P in free space. Another particle B of same charge and mass $4 \mu g$ is kept at a distance of 1 mm from P. If B is released then its velocity at a distance of 9 mm from P is
(Take $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$)
A. $1.5 \times 10^{2} \mathrm{~m} / \mathrm{s}$
B. $1.0 \mathrm{~m} / \mathrm{s}$
C. $3.0 \times 10^{4} \mathrm{~m} / \mathrm{s}$
D. $2.0 \times 10^{3} \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

15. A plate composed of welded sheets of
aluminium and iron is connected to an electrical circuit as shown in figure. What will happen if a fairly strong current to be passed
through the circuit?

A. strip bends upward
B. strip bends downward
C. strip remains in its initial condition
D. none of the above

Answer: A
16. If the radius of a sphere is measured to be
$(2.1 \pm 0.05) \mathrm{cm}$. Calculate the surface area (in cm^{2})
A. 54.45 ± 2.46
B. 55.44 ± 2.64
C. 52.03 ± 4.26
D. 45.54 ± 2.68

Answer: B

Watch Video Solution

17. A point P lies on the axis of a flat coil carryinga current. The mangetc moment of the coil is μ. What will be the magnetic field at point P ? It is given that the distance of P from the centre of coil is d , which is large compared to the radius of the coil.
A. $\frac{\mu_{0}}{2 \pi}\left(\frac{\mu}{d^{3}}\right)$
B. $\frac{\mu_{0}}{4 \pi}\left(\frac{\mu}{d^{3}}\right)$
C. $\frac{\mu_{0}}{6 \pi}\left(\frac{\mu}{d^{2}}\right)$
D. $\frac{\mu_{0}}{8 \pi}\left(\frac{\mu}{d^{2}}\right)$

Answer: A

D Watch Video Solution

18. An amount of heat 50J of heat energy is
removed from 4 moles of a monatomic ideal
gas at constant volume.The temperature drops by
A. $40^{\circ} C$
B. $30^{\circ} \mathrm{C}$
C. $10^{\circ} \mathrm{C}$
D. $0^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

19. Two small satellites are moving in circular orbits around the earth at a distance R and $R+\Delta R$ from the centre of the earth. If their
time period of rotation are T and $T+\Delta T$
respectively, then

$$
\begin{aligned}
& \text { A. } \Delta T=T \frac{\Delta R}{R} \\
& \text { B. } \Delta T=3 T \frac{\Delta R}{R} \\
& \text { С. } \Delta T=\frac{3}{2} T \frac{\Delta R}{R} \\
& \text { D. } \Delta T=\frac{2}{3} T \frac{\Delta R}{R}
\end{aligned}
$$

Answer: C

D Watch Video Solution

20. A solid sphere of copper of radius R and a
hollow sphere of the same material of inner
radius r and outer radius R are heated to the same temperature and allowed to cool in the same environment. Which of them starts cooling faster?
A. hollow sphere
B. solid sphere
C. at equal time
D. none of these

Answer: A

D Watch Video Solution

21. Choose the intensive property from the options given below
A. volume
B. mass
C. refractive index
D. weight

Answer: C

D Watch Video Solution

22. A uniform rod $A B$ of mass m and length l
is at rest on a smooth horizontal surface. An impulse J is applied to the end B, perpendicular to the rod in the horizontal direction. Speed of particlem P at a distance $\frac{l}{6}$ from the centre towards A of the rod after time $t=\frac{\pi m l}{12 J}$ is.
A. $2 \frac{\mathrm{~J}}{\mathrm{~m}}$
B. $\frac{J}{\sqrt{2} m}$
C. $\frac{J}{m}$
D. $\sqrt{2} \frac{J}{m}$

Answer: D

D Watch Video Solution

23. If the temperature of the sink of a Carnot engine having an efficiency $\frac{1}{6}$ is reduced by $62^{\circ} \mathrm{C}$, then its efficiency is doubled. Find the
temperature of the sink and source respectively.
A. $124^{\circ} C, 62^{\circ} C$
B. $99^{\circ} C, 37^{\circ} C$
C. $37^{\circ} C, 99^{\circ} C$
D. $62^{\circ} \mathrm{C}, 124^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution
24. The work done in moving a particle in the gravitational field of earth from point A to point B along three different paths 1,2 and 3 are W_{1}, W_{2} and W_{3} respectively , then

A. $W_{1}>W_{2}>W_{3}$
B. $W_{1}=W_{2}=W_{3}$
C. $W_{1}<W_{2}<W_{3}$
D. $W_{2}>W_{1}>W_{3}$

Answer: B

D Watch Video Solution

25. Find the magnitude of the magnetic field at the center of an equilateral triangular loop of side length 1 m which is carrying a current of 10A. (Take $\mu_{0}=4 \pi \times 10^{-7} N A^{-2}$)
A. $18 \mu T$
B. $1 \mu T$
C. $9 \mu T$
D. $3 \mu T$

Answer: A

D Watch Video Solution
26. The image for the converging beam after refraction through the curved surface is
formed at

A. $x=40 \mathrm{~cm}$
B. $x=\frac{40}{3} c m$
C. $x=-\frac{40}{3} c m$
D. $x=\frac{180}{7} \mathrm{~cm}$

Answer: A
27. A point object is moving with velocity
$v_{0}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ in front of a moving plane
mirror whose normal is along x - axis.The mirror is moving with velocity
$v_{m}=\hat{i}-4 \hat{j}+2 \hat{k}$. Find the velocity vector of image
A. $-5 \hat{j}$
B. $-3 \hat{j}+4 \hat{k}$
C. $-4 \hat{j}+2 \hat{k}$

$$
\text { D. } 2 \hat{i}-3 \hat{j}+2 \hat{k}
$$

Answer: B

- Watch Video Solution

28. A battery of internal resistance 4Ω is
connected to the network of the resistance as
shown in figure. To deliver maximum power to
the network, the magnitude of resistance R in
Ω should be $\frac{x}{21}$. Find x .

A. 16
B. 17
C. 19
D. 23

Answer: C

D Watch Video Solution
29. The displacement (s)- velocity (v) graph of a particle if it starts moving from rest with a uniform acceleration which is parallel to its instantaneous direction of motion is

A.

C.

D.

Answer: C

D Watch Video Solution

30. A very broad elevator is going up vertically with a constant acceleration of $2 m / s^{2}$. At the instant when its velocity is $4 m / s$ a ball is projected form the floor of the lift with a speed of $4 m / s$ relative to the floor at an
elevation of 30°. Time taken by the ball to
return the floor is $\left(g=10 m s^{2}\right)$
A. $\frac{1}{2} S$
B. $\frac{1}{3} S$
C. $\frac{1}{4} S$
D. 1 S

Answer: B

D Watch Video Solution
31. If A block is dragged on a smooth horizontal plane with the help of a light rope which moves with a velocity v as given in the figure .Then find the horizontal velocity of the block.

A. v
B. $v \sin \theta$
C. $\frac{v}{\sin \theta}$
D. $\frac{v}{\cos \theta}$

Answer: C

- Watch Video Solution

32. A particle at the end of a spring executes
simple harmonic motion with a period t_{1} while
the corresponding period for another spring
is t_{2} if the oscillation with the two springs in series is T then
A. $T=t_{1}+t_{2}$
B. $T^{2}=t_{1}^{2}+t_{2}^{2}$
C. $T^{-1}=t_{1}^{-1}+t_{2}^{-1}$
D. $T^{-2}=t_{1}^{-2}+t_{2}^{-2}$

Answer: B
(Watch Video Solution
33. Find the resultant amplitude of the following simple harmonic equations :
$x_{1}=5 \sin \omega t$
$x_{2}=5 \sin \left(\omega t+53^{\circ}\right)$
$x_{3}=-10 \cos \omega t$
A. 5
B. 10
C. 15
D. 20

Answer: B
34. A monochromatic ray of photons of energy

5 eV are incident on cathode. Electrons
reaching the anode have kinetic energyies
varying from 6 eV to 8 eV .Choose the correct
option.

A. work function of the metal is 1 eV
B. work function of the metal is 3 eV
C. current in the circuit is equal to
saturation value

D. current in the circuit is less than

 saturation value.
Answer: D

D Watch Video Solution

35. What is the reason behind the disturbing of incoming and reflected signals when a low
flying aircraft passes overhead, which results in slight shaking of the picture on our TV screen?
A. interference
B. diffraction
C. polarisation of direct signal
D. both (b) and (c)

Answer: A

- Watch Video Solution

36. By what factor does the de-Broglie
wavelength of a free electron changes if its
kinetic energy is doubled?
A. $\frac{1}{2}$
B. 2
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{2}$

Answer: C

D Watch Video Solution

37. There is a circular hole of diameter $d=140 \mu m$ at the bottom of a vessel containing mercury . The minimum height of
mercury layer so that the mercury will not flow out of this hole is
(Surface tension, $\sigma=490 \times 10^{-3} \mathrm{Nm}^{-1}$)
A. 1.03 mm
B. 1.53 mm
C. 1.03 mm
D. 1.53 cm

Answer: A

D Watch Video Solution
38. Water drains out of a vessel filled with water upto height h through a hole of area A in t seconds.If the height of the water is $4 h$ then how much time will be required for the water to drain out ?[Assume $A \ll A_{0}$ (area of tank)]
A. t seconds
B. 4 t second
C. 2 t seconds
D. $\frac{t}{4}$ seconds

- Watch Video Solution

39. An N-P-N transistor in a common emitter mode is used as a simple voltage amplifier with a collecter current of 4 mA . The terminal of a 8 V battery is connected to the collector through a load ressitance R_{L} and to the base through a resistance R_{B}. The collector-emitter voltage $V_{C E}=4 V$ base -emitter voltage $V_{B E}=0.6 \mathrm{~V}$ and base current amplification
factor $\beta_{d . c .}=100$.Find the values of R_{L} and R_{B}.
A. $R_{L}=1 k \Omega, R_{B}=185 k \Omega$
B. $R_{L}=2 k \Omega, R_{B}=150 k \Omega$
C. $R_{L}=1 k \Omega, R_{B}=240 k \Omega$
D. $R_{L}=3 k \Omega, R_{B}=185 k \Omega$

Answer: A

D Watch Video Solution

40. In the figure there is a DC voltage regulator circuit, with a Zener breakdown voltage $=6$ V.If the unregulated input voltage varies between 10 V to 16 V ,then what is the maximum Zener current?

Is

A. 1.5 mA
B. 7.5 mA
C. 3.5 mA
D. 2.5 mA

Answer: C

D Watch Video Solution

41. The equation of a wave on a string of linear mass density $0.04 \mathrm{kgm}^{-1}$ is given by

$$
y=0.02(m) \sin \left[2 \pi\left(\frac{t}{0.04(s)}-\frac{x}{0.50(m)}\right)\right] .
$$

The tension in the string is :
A. 4.0 N
B. 12.5 N
C. 0.25 N
D. 6.25 N

Answer: D

D Watch Video Solution
42. There is a leak proof cylinder of length

1m,made of a metal that has very low coefficient of expansion is floating vertically in water at $0^{\circ} C$ such that its height above the water surface is 20 cm . If the temperature of water is increased to $4^{\circ} C$, the height of the cylinder above the water surface becomes 21 cm . The density of water at $T=4^{\circ} C$, relative to the density at $T=0^{\circ} C$ is approximately A. 1.03
B. 1.04
C. 1.26
D. 1.01

Answer: D

D Watch Video Solution

43. In Young's double slit experiment a mica plate of refractive index μ is introduced in the path of light coming from one of the slit. If the central bright frige gets shifted to the point originally occupied by the fourth bright
fringe, then the thickness of the mica plate will be (symbols have their usual meaning)

$$
\begin{aligned}
& \text { A. } \frac{2 \lambda}{(\mu-1)} \\
& \text { B. } \frac{4 \lambda}{3(\mu-1)} \\
& \text { C. } \frac{4 \lambda}{(\mu-1)} \\
& \text { D. } \frac{2 \lambda}{3(\mu-1)}
\end{aligned}
$$

Answer: C

D Watch Video Solution

44. A 10 kg stone is suspended with a rope of breaking strength $30 \mathrm{~kg}-\mathrm{wt}$. The minimum time in which the stone can be raised through a height 10 m starting from rest is (Take,

$$
\left.g=10 N k g^{-1}\right)
$$

A. 0.5 s
B. 1.0 s
C. $\sqrt{\frac{2}{3}} s$
D. 2.0 s

Answer: B
45. On which principle does sonometer work?
A. Hooke's law
B. Elasticity
C. Resonance
D. Newton's law

Answer: C

