©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 103

Physics

1. A diminished image of an object is to be
obtained on a screen 1.0 m from it. This can be
achieved by appropriately placing
A. A convex mirror of suitable focal length
B. A concave mirror of suitable focal length
C. A convex lens of focal length less than
0.25 m
D. A concave lens of suitable focal length

Answer: C

D Watch Video Solution

2. A certain series $R C$ circuit is formed using a resistance R, a capacitor without dieiectric having a capacitance $C=2 F$ and a battery of emf $E=3 V$. The circuit is completed and it is allowed to attain the steady state. After this, at $t=0$, half the thickness of the capacitor is
filed with a dielectric of constant $K=2$ as shown in the figure. The system is again allowed to attain a steady state. What will be
the heat generated (in joule) in the capacitor
between $t=0$ and $t=\infty$?

A. 3
B. 5
C. 2
D. 6

Answer: A

D Watch Video Solution

3. A ring of mass m free to slide on a fixed smooth horizontal rod is attached to a particle of mass $M \mathrm{~kg}$ by a inextensible string
of length I. Initially, both M and m are at rest
and the string is vertical. A horizontal velocity
v_{0} is imparted to the particle. The maximum height up to which block will rise w.r.t its initial position is $(M=2 m)$

A. $\frac{v_{0}^{2}}{2 g}$
B. $\frac{v_{0}^{2}}{4 g}$
C. $\frac{v_{0}^{2}}{6 g}$
D. $\frac{v_{0}^{2}}{8 g}$

Answer: C

D Watch Video Solution

4. A thin circular plate of mass M and radius R
has its density varying as $\rho(r)=\rho_{0} r$ with ρ_{0}
as constant and r is the distance from its
center. The moment of Inertia of the circular plate about an axis perpendicular to the plate
and passing through its edge is $I=a M R^{2}$

The value of the coefficient a is :
A. $\frac{3}{5}$
B. $\frac{1}{2}$
C. $\frac{8}{5}$
D. $\frac{3}{2}$

Answer: C
(Watch Video Solution
5. The binding energies per nucleon for deuteron (. ${ }_{1} H^{2}$) and helium (${ }_{2} H e^{4}$) are 1.1 MeV and 7.0 MeV respectively. The energy released when two deutrons fuse to form a helium nucleus (. ${ }_{2} H e^{4}$) is.
A. 13.9 MeV
B. 26.9 MeV
C. 23.6 MeV
D. 19.2 MeV

Answer: C

- Watch Video Solution

6. A monkey of mass 20 kg is holding a vertical
rope. The rope will not break when a mass of
25 kg is suspended from it but will break it the mass exeeds 25 kg . What is the maximum acceleration with which the monkey can climb up along the rope? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.
A. $2.5 m s^{-2}$
B. $5 m s^{-2}$
C. $10 m s^{-2}$

D. $25 m s^{-2}$

Answer: A

- Watch Video Solution

7. Let the end error on the LHS and RHS be equal to 1 cm . For the balance point at O, find out the $\%$ error in the value of X ? (If the end error is 1 cm from both sides then it means
the correct reading will become $10 \mathrm{~cm}+1 \mathrm{~cm}$
from LHS and $90 \mathrm{~cm}+1 \mathrm{~cm}$ from the RHS)

A. 4.2%
B. 8.1%
C. 9.2%
D. None

Answer: B
8. A symmetric star shaped conducting wire loop is carrying a steady state current I as shown in the figure. The distance between the diametrically opposite vertices of the star is

4a. The magnitude of the magnetic field at the

A. $\frac{\mu_{0} I}{4 \pi a} 3[\sqrt{3}-1]$
B. $\frac{\mu_{0} I}{4 \pi a} 6[\sqrt{3}-1]$
C. $\frac{\mu_{0} I}{4 \pi a} 6[\sqrt{3}+1]$
D. $\frac{\mu_{0} I}{4 \pi a} 3[2-\sqrt{3}]$

Answer: B

D Watch Video Solution

9. A particle A of mass m and initial velocity v
collides with a particle of mass $m / 2$ which is
at rest. The collision is head on, and elastic.

The ratio of the de-broglie wavelength
λ_{A} and λ_{B} after the collision is
A. $\frac{\lambda_{A}}{\lambda_{B}}=\frac{1}{2}$
B. $\frac{\lambda_{A}}{\lambda_{B}}=\frac{1}{3}$
c. $\frac{\lambda_{A}}{\lambda_{B}}=2$
D. $\frac{\lambda_{A}}{\lambda_{B}}=\frac{2}{3}$

Answer: C

D Watch Video Solution

10. A diesel engine takes in 1 mole of air at 300

K, 1 atm pressure and compresses it adiabatically to $\frac{1}{32}$ th of the original volume.

Considering air as a diatomic ideal gas, the change in temperature is

A. 900 K

B. 1200 K
C. 600 K
D. 2400 K

Answer: A

D Watch Video Solution

11. A fully charged capacitor C with initial
charge q_{0} is connected to a coil of self inductance L at $t=0$. The time at which the
energy is stored equally between the electric and the magnetic fields is
A. $\pi \sqrt{L C}$
B. $\frac{\pi}{4} \sqrt{L C}$
C. $\frac{\pi}{2} \sqrt{L C}$
D. $\frac{\pi}{6} \sqrt{L C}$

Answer: B

- Watch Video Solution

12.

A cooking vessel on a slow burner contains 5 kg of water and an unknown mass of ice in equilibrium at $0^{\circ} C$ at time $t=0$. The temperature of the mixture is measured at various times and the result is plotted as
shown in Fig. During the first 50 min the mixture remains at $0^{\circ} C$. From 50 min to 60
\min, the temperature increases to $2^{\circ} C$

Neglecting the heat capacity of the vessel, the initial mass of the ice is

$$
\begin{aligned}
& \text { A. } \frac{10}{7} k g \\
& \text { B. } \frac{5}{7} k g \\
& \text { C. } \frac{5}{4} k g \\
& \text { D. } \frac{5}{8} k g
\end{aligned}
$$

Answer: B

D Watch Video Solution
13. The mass density of a spherical body is given by $\rho(r)=\frac{k}{r}$ for $r \leq R$ and $\rho(r)=0$ for $r>R$, where r is the distance from the centre. The correct graph that describes qualitatively the acceleration, a, of a test particle as a function of r is :
A.

B.

C.

D.

Answer: A

D Watch Video Solution

14. If linear density of a rod of length $3 m$ varies
as $\lambda=2+x$, them the position of the centre of gravity of the rod is
A. $\frac{7}{3} m$

B. $\frac{12}{7} m$
 C. $\frac{10}{7} m$
 D. $\frac{9}{7} m$

Answer: B

D Watch Video Solution

15. From the top of a tower of height 50 m , a ball is thrown vertically upwards with a certain
velocity. It hits the ground 10 s after it is thrown up. How much time does it take to
cover a distance $A B$ where A and B are two
points 20 m and 40 m below the edge of the tower ? $\left(g=10 m s^{-2}\right)$
A. 2.0 s
B. 1.0 s
C. 0.5 s
D. 0.4 s

Answer: D

D Watch Video Solution
16. Kinetic energy of a particle moving along a circle of radisu R depends on the distance covered as $K=a s^{2}$ where a is a constant.

Find the force acting on the particle as a function of s .

$$
\begin{aligned}
& \text { A. } 2 a \frac{s^{2}}{R} \\
& \text { B. } 2 a s\left(1+\frac{s^{2}}{R^{2}}\right)^{\frac{1}{2}} \\
& \text { C. } 2 \text { as } \\
& \text { D. } 2 a \frac{R^{2}}{s}
\end{aligned}
$$

- Watch Video Solution

17. A Zener diode is connected to a battery and
a load as shown below. The currents l, l_{Z} and l_{L} are respectively :-

A. $12.5 \mathrm{~mA}, 7.5 \mathrm{~mA}, 5 \mathrm{~mA}$
B. $15 \mathrm{~mA}, 7.5 \mathrm{~mA}, 7.5 \mathrm{~mA}$

C. $12.5 \mathrm{~mA}, 5 \mathrm{~mA}, 7.5 \mathrm{~mA}$

D. $15 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$

Answer: A

- Watch Video Solution

18. A particle of mass m is projected at an angle of 60° with a velocity of $20 \mathrm{~m} / \mathrm{s}$ relative to the ground from a plank of same mass m which is placed on smooth surface Initially

Plank was at rest The minimum length of the
plank for which the ball will fall on the plank
itself is $\left(g=10 m / s^{2}\right)$

A. $40 \sqrt{3}$
B. $20 \sqrt{3}$
C. $10 \sqrt{3}$
D. $60 \sqrt{3}$

Answer: A
19. A capacitor of capacitance $10 \mu F$ is connected to an AC source and an AC Ammeter. If the source voltage varies as $V=50 \sqrt{2} \sin 100 t$, the reading of the ammeter is
A. 50 mA
B. 70.7 mA
C. 5.0 mA
D. 7.07 mA

Answer: A

D Watch Video Solution

20. A uniform wire of length I and mass M is
stretched between two fixed points, keeping a
tension F. A sound of frequency μ is impressed
on it. Then the maximum vibrational energy is
existing in the wire when μ
A. $\frac{1}{2} \sqrt{\frac{M L}{F}}$
B. $\sqrt{\frac{F L}{M}}$
C. $2 \times \sqrt{\frac{F M}{L}}$
D. $\frac{1}{2} \sqrt{\frac{F}{M L}}$

Answer: D

D Watch Video Solution

21. Find the wavelength of the K_{α} line in copper $(Z=29)$, if the wave length of the K_{α}
line in iron $(Z=26)$ is known to be equal to
193pm (Take $b=1$)
22. A calorimeter of negligible heat capacity contains 100 of water at $40^{\circ} \mathrm{C}$. The water cools to $35^{\circ} \mathrm{C}$ in 5 minutes. The water is now replaced by k-oil of equal volume at $40^{\circ} \mathrm{C}$.

Find the time taken for the temperature to become $35^{\circ} \mathrm{C}$ under similar conditions. Specific heat capacities of water and K -oil are $4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1} \quad$ and $\quad 2100 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ respectively. Density of K -oil $=800 \mathrm{kgm}^{-3}$.
23. A slender homogeneous rod of length 2 L
floats partly immersed in water, being supported by a string fastened to one of its ends, as shown in the figure. The specific gravity of the rod is 0.36 . The length of the rod that extends out of the water is $\frac{K L}{10}$ Find the value of K.

- Watch Video Solution

24. In Young's experiment interference bands are produced on the screen placed at $1.5 m$ from the slits 0.15 mm apart and illuminated by light of wavelength $6000 \AA$. If the screen is now taken away from the slit by 50 cm the change in the fringe width will be

- Watch Video Solution

25. A stationary source emits the sound of
frequency $f_{0}=492 \mathrm{~Hz}$. The sound is reflected
by a large car approaching the source with a
speed of $2 \mathrm{~ms}^{-1}$. The reflected signal is
received by the source and superposed with
the original. What will be the beat frequency of the resulting signal in Hz ? (Given that the speed of sound in air is $330 \mathrm{~ms}^{-1}$ and the car reflects the sound at the frequency it has received).
