đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 104

Physics

1. A boat which has a speed of $5 k m / h r$ in
steel water crosses a river of width 1 km along
the shortest possible path in 15 minutes. The velocity of the river water in $k m / h r$ is
A. $1 \mathrm{~km}^{-1}$
B. $3 k m h^{-1}$
C. $4 k m h^{-1}$
D. $\sqrt{41} k m h^{-1}$

Answer: B

- Watch Video Solution

2. A storage battery of emf 0.8 V and internal resistance 0.5Ω is being charged by a 120 V supply using a series resistor of 15.5Ω. What is
the terminal voltage of the battery during charging? What is the purpose of having a series resistor in the charging circuit?
A. 11.5 V
B. 20 V
C. 21.5 V
D. 12.3 V

Answer: A

D Watch Video Solution

3. The electric field in a certain region is given
by $\quad E=5 \hat{i}-3 \hat{j} k v / m$. The potential
difference $V_{B}-V_{A}$ between points a and B having coordinates $(4,0,3) \mathrm{m}$ and $(10,3,0) \mathrm{m}$ respectively, is equal to
A. -39 V
B. 11 V
C. 25 V
D. -25 V

Answer: A

D Watch Video Solution

4. Three concentric spherical shells have radii
a, b and $c(a<b<c)$ and have surface
charge densities $\sigma,-\sigma$ and σ respectively. If
V_{A}, V_{B} and V_{C} denote the potentials of the three shells, then for $c=q+b$, we have
A. $V_{C}=V_{B} \neq V_{A}$
B. $V_{C} \neq V_{B} \neq V_{A}$
C. $V_{C}=V_{B}=V_{A}$
D. $V_{A}=V_{C}>V_{B}$

Answer: D

D Watch Video Solution

5. If a tuning fork of frequency $\left(f_{0}\right) 340 \mathrm{~Hz}$ and tolerance $\pm 1 \%$ is used in the resonance column method for determining the speed of
sound. If the first and the second resonance are measured at
$l_{1}=24.0 \mathrm{~cm}$ and $l_{2}=74.70 \mathrm{~cm}$, then the permissible error in speed of sound is
A. 1.2%
B. 1.8%
C. 1%
D. 0.8%

Answer: A

6. A body weighs 63 N on the surface of the earth. What is the gravitational force on it due to the earth at a height equal to half the radius of the earth?
A. 28 N
B. 23 N
C. 12 N
D. 67 N

Watch Video Solution

7. Two identical beakers A and B contain equal volumes of two different liquids at $60^{\circ} \mathrm{C}$ each and left to cool down. Liquid in A has density of $8 \times 10^{2} \mathrm{~kg} / \mathrm{m}^{3}$ and specific heat of $2000 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ while liquid in B has density of $10^{3} \mathrm{kgm}^{-3}$ and specific heat of $4000 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$. Which of the following best describes their temperature versus time graph schematically? (assume the emissivity of both the beakers to be the same)

C.

D.

Answer: B

D Watch Video Solution

8. One mole of a monatomic gas is taken from
a point A to another point B along the path
$A C B$. The initial temperature at A is T_{0}.
Calculate the heat abosrbed by the gas in the
process $A \rightarrow C \rightarrow B$.

A. $\frac{11 R T_{0}}{2}$
B. $\frac{7 R T_{0}}{2}$
C. $\frac{5 R T_{0}}{2}$
D. $\frac{13 R T_{0}}{2}$

Answer: A

D Watch Video Solution

9. Find the magnitude of the magnetic field at
the center of an equilateral triangular loop of
side length 1 m which is carrying a current of
10A. (Take $\mu_{0}=4 \pi \times 10^{-7} N A^{-2}$)
A. $3 \mu T$
B. $1 \mu T$
C. $18 \mu T$
D. $9 \mu T$

Answer: C

D Watch Video Solution

10. A bar has a magnetic moment equal to
5×10^{-5} weber $\times m$. It is suspended in a
magnetic field which has a magnetic induction
(B) equal to $8 \pi \times 10^{-4}$ tesla. The magnet vibrates with a period of vibration equal to 15 sec. The moment of intertia of the magnet is
A. $4.54 x 10^{4} \mathrm{~kg} m^{2}$
B. $4.54 x 10^{-5} \mathrm{~kg} \mathrm{~m}{ }^{2}$
C. $4.54 x 10^{-4} \mathrm{~kg} \mathrm{~m}{ }^{2}$
D. $4.54 x 10^{-4} \mathrm{~kg} \mathrm{~m}{ }^{5}$

Answer: D

D Watch Video Solution
11. Assuming that four hydrogen atom combine to form a helium atom and two positrons, each of mass $0.00549 u$, calculate the \quad energy \quad released.
$m\left({ }_{1} H^{1}\right)=1.007825 u, m\left({ }_{\cdot 2} H e^{4}\right)=4.002604 u$
A. 25.71 MeV
B. 20.71 MeV
C. 22.75 MeV
D. 23.50 MeV

Answer: A

D Watch Video Solution

12. A simple harmonic wave of amplitude 8 units travels along positive x-axis. At any given instant of time, for a particle at a distance of 10 cm from the origin, the displacement is +6 units, and for a particle at a distance of 25 cm from the origin, the displacement is +4 units. Calculate the wavelength.
A. 200 cm
B. 230 cm
C. 210 cm
D. 250 cm

Answer: D

D Watch Video Solution

13. A tiny spherical oil drop carrying a net
charge q is balanced in still air with a vertical
uniform electric field of strength
$\frac{81 \pi}{7} \times 10^{5} \mathrm{Vm}^{-1}$. When the field is switched off, the drop is observed to fall with terminal velocity $2 \times 10^{-3} m s^{-1}$. Given $g=9.8 m s^{-2}$, viscosity of the air $=1.8 \times 10^{-5} \mathrm{Nsm}^{-2}$ and the denisty of oil $=900 \mathrm{kgm}^{-3}$, the magnitude of q is
A. $1.6 \times 10^{19} C$
B. $3.2 \times 10^{19} C$
C. $4.8 \times 10^{19} C$
D. $8.0 \times 10^{19} \mathrm{C}$
14. A thin glass (refractive index 1.5) lens has optical power of $-5 D$ in air. Its optical power in a liquid medium with refractive index 1.6 will be
A. 1 D
B. -1 D
C. 25 D
D. -25 D

Answer: A

- Watch Video Solution

15. From a solid sphere of M and radius R a
cube of maximum possible volume is cut.
Moment of inertia of cube about an axis passing through its centre and perpendiular to one of its faces is:
A. $\frac{4 M R^{2}}{3 \sqrt{3} \pi}$
B. $\frac{M R^{2}}{32 \sqrt{2} \pi}$
C. $\frac{M R^{2}}{16 \sqrt{2} \pi}$
D. $\frac{4 M R^{2}}{9 \sqrt{3} \pi}$

Answer: D

D Watch Video Solution

16. The maximum electron density in the ionospherein the mornong is $10^{10} \mathrm{~m}^{-3}$. At noon time it increases to $2 \times 10^{10} \mathrm{~m}^{-3}$. Find the ratio of critical frequency at noon and the critical frequency in the morning.
A. 2
B. 2.82
C. 4
D. 1.414

Answer: D

D Watch Video Solution

17. A piece of metal floats on mercury. The coefficients of volume expansion of the metal and mercury are γ_{1} and γ_{2} respectively. If the
temperatures of both mercury and the metal are increased by an amount ΔT, the fraction of the volume of the metal submerged in mercury changes by the factor.

$$
\begin{aligned}
& \text { A. } \frac{1+\gamma_{2} \Delta T}{1+\gamma_{1} \Delta T} \\
& \text { B. } 1+\gamma_{2} \Delta T \\
& \text { C. } 1+\gamma_{1} \Delta T \\
& \text { D. } \frac{1+\gamma_{2} \Delta T}{1-\gamma_{1} \Delta T}
\end{aligned}
$$

Answer: A

18. In Young's double-slit experiment, the intensity at a point P on the screen is half the maximum intensity in the interference pattern.

If the wavelength of light used is λ and d is
the distance between the slits, the angular separation between point P and the center of the screen is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{\lambda}{d}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{\lambda}{2 d}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{\lambda}{3 d}\right)
\end{aligned}
$$

D. $\sin ^{-1}\left(\frac{\lambda}{4 d}\right)$

Answer: D

D Watch Video Solution

19. A motor cycle starts from rest and accelerates along a straight path at $2 m / \mathrm{s}^{2}$. At the starting point of the motor cycle there is a stationary electric siren. How far has the motor cycle gone when the driver hears the frequency of the siren at 94% of its value
when the motor cycle was at rest ? (Speed of sound $=330 \mathrm{~ms}^{-2}$)
A. 49 m
B. 98 m
C. 147 m
D. 196 m

Answer: B
(Watch Video Solution
20. A ball is dropped on to a horizontal plate
from a height $h=9 \mathrm{~m}$ above it. If the coefficient of restitution is $e=1 / 2$, the total distance travelled before the ball comes to rest is
A. 10 m
B. 15 m
C. 20 m
D. 25 m

Answer: B

- Watch Video Solution

21. Find the quantum number n corresponding
to nth excited state of He^{++}ion if on
transition to the ground state the ion emits
two photons in succession with wavelength
108.5 nm and 30.4 nm . The ionization energy of the hydrogen atom is 13.6 eV .

- Watch Video Solution

22. A particle of mass m moving in the x direction with speed $2 v$ is hit by another particle of mass 2 m moving in they y direction with speed v. If the collision is perfectly inelastic, the percentage loss in the energy during the collision is close to :

D Watch Video Solution

23. Masses M_{1}, M_{2} and M_{3} are connected by
string of negligible mass which pass over
massless and frictionless pulleys P_{1} and P_{2}
as shown in figure 7.15. The masses move such
that the string between P_{1} and P_{2} is parallel
to the incline and the portion of the string
between P_{2} and M_{3} is horizontal. The masses
M_{2} and M_{3} are 4.0 kg each and the coefficient of kinetic friction between the masses and the surfces is 0.25 . The inclined plane makes an angle of 37° with the horizontal. If the mass M_{1} moves downwards with a uniform velocity, find (i) the mass of M_{1},
(ii) the tension in the horizontal portion.
$\left(g=9.8 m s^{-2}, \sin 37^{\circ}=\frac{3}{5}\right)$

D Watch Video Solution

24. A concrete sphere of radius R has cavity of radius r which is packed with sawdust. The specific gravities of concrete and sawdust are respectively 2.4 and 0.3 for this sphere to float with its entire volume submerged under
water. Ratio of mass of concrete to mass of sawdust will be

D Watch Video Solution

25. The time period (T) of small oscillations of the surface of a liquid drop depends on its surface tension (s), the density (ρ) of the
liquid and it's mean radius (r) as $T=c s^{x} \rho^{y} r^{z}$.
If in the measurement of the mean radius of
the drop, the error is 2%, the error in the measurement of surface tension and density
both are of 1%. Find the percentage error in measurement of the time period.

- Watch Video Solution

