©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 106

Physics

1. A thin bar of length L has a mass per unit
length λ, that increases linerarly with distance
from one end. If its total mass is M and its
mass per unit length at the lighter end is λ_{0},
then the distance of the centre of mass from
the lighter end is

$$
\begin{aligned}
& \text { A. } \frac{L}{3}+\frac{\lambda_{0} L^{2}}{8 M} \\
& \text { B. } \frac{L}{3}+\frac{\lambda_{0} L^{2}}{4 M} \\
& \text { C. } \frac{L}{2}-\frac{\lambda_{0} L^{2}}{4 M} \\
& \text { D. } \frac{2 L}{3}-\frac{\lambda_{0} L^{2}}{6 M}
\end{aligned}
$$

Answer: D

D Watch Video Solution
2. In a circular motion of a particle, the tangential acceleration of the particle is given by $a_{t}=9 m s^{-2}$. The radius of the circle is 4 m
. The particle was initially at rest. Time after which total acceleration of the particle makes an angle of 45° with the radial acceleration is
A. $\frac{1}{3} s$
B. $\frac{5}{3} s$
C. $\frac{4}{3} s$
D. $\frac{4}{3} s$

Answer: B

D Watch Video Solution

3. In the following network, the potential at O
is

A. 4 V
B. 3 V
C. 6 V
D. 4.8 V

Answer: D

D Watch Video Solution

4. Four electric charges $+q,+q,-q$ and $-q$ are placed at the corners of a square of side 2 L
(see figure). The electric potential at point A,
mid-way between the two charges $+q$ and $+q$,
is

$$
\begin{aligned}
& \text { A. } \frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{L}(1+\sqrt{5}) \\
& \text { B. } \frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{L}\left(1+\frac{1}{\sqrt{5}}\right)
\end{aligned}
$$

C. zero
D. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{L}\left(1-\frac{1}{\sqrt{5}}\right)$

Answer: D

D Watch Video Solution

5. A galvanometer of resistance 50Ω is connected to a battery of 3 V along with a resistance of 2950Ω in series. A full scale deflection of 30 division is obtained in the galvanometer. In order to reduce this series should be:-
A. 5050Ω
B. 5550Ω
C. 6050Ω
D. 4450Ω

Answer: D
(Watch Video Solution
6. If R is the radius of the Earth then the
height above the Earth's surface at which the acceleration due to gravity decreases by 20% is
A. $\left(\frac{\sqrt{5}}{2}-1\right) R$
B. $\left(\frac{\sqrt{5}}{2}+1\right) R$
C. $(5 \sqrt{2}-1) R$
D. $(5 \sqrt{2}+1) R$

Answer: A
7. A non - conducting piston of mass m and are
S_{0} divides a non - conducting, closed cylinder as shown in the figure. A piston having mass m is connected with the top wall of the cylinder by a spring of force constant k. The top part is evacuated and the bottom part is evacuated and the bottom part contains an ideal gas at a pressure P_{0} in the equilibrium position.

Adiabatic exponent γ and in equilibrium length of each part is I. (neglect friction). Find
the angular frequency for small oscillation.

A. $\frac{\sqrt{k l+\gamma P_{0} S_{0}}}{2 m l}$
B. $\frac{\sqrt{3 k l+\gamma P_{0} S_{0}}}{m l}$
C. $\sqrt{\frac{k}{m}}$
D. $\frac{\sqrt{k l+\gamma P_{0} S_{0}}}{m l}$

Answer: D

D Watch Video Solution

8. A sound wave passing through air at $N T P$ produces a pressure of $0.001 \frac{\mathrm{dyne}}{\mathrm{cm}^{2}}$ during a compression. The corresponding change in temperature (given $\gamma=1.5$ and assume gas to be ideal) is

$$
\text { A. } 8.97 \times 10^{-4} K
$$

B. $9.87 \times 10^{-6} K$
C. $8.97 \times 10^{-8} K$
D. $9.87 \times 10^{-4} K$

Answer: C

D Watch Video Solution

9. A steady current flows in a long wire. It is
bent into a circular loop of one turn and the magnetic field at the center of the coil is B. If the same wire is bent into a circular loop of n
turns, the magnetic field at the center of the

coil is

A. $\frac{B}{n}$
B. nB
C. $n B^{2}$
D. $n^{2} B$

Answer: D
(Watch Video Solution
10. In a vernier callipers, one main scale division is xcm and n divisions of the vernier
scale coincide with ($n-1$) divisions of the main scale. The least count (in cm) of the callipers is
A. $\frac{p}{q}(p-1)$
B. $\frac{p}{q}$
C. $\frac{q-1}{p q}$
D. $\frac{1}{p q}$

Answer: D

- Watch Video Solution

11. Block A of mass m and block B of mass $2 m$
are placed on a fixed traingular wedge by means of a massless inextensible string and a frictionless pulley as shown in figure The wedge is inclined at 45° to the horizontal on both sides .The coefficient of friction between
blocks A and the wedge is $2 / 3$ and that between block B and the wedge is $1 / 3$. If the system A and B is released from rest find the following

The acceleration of A is
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

12. A and B are two radioactive substances
whose half lives are 1 and 2 years respectively.

Initially 10 gm of A and 1 gm of B is taken. The
time (approximate) after which they will have same quantity remaining is.
A. 6.62 years
B. 5 years
C. 3.2 years
D. 7 years

Answer: A

D Watch Video Solution

13. A block of mass 1 kg is dropped on a spring mass system as shown in the figure. The block traves 100 meters in the air before strinking
the 3 kg mass. Calculate maximum compression in the spring, if both the blocks move together after the collision. Spring
constant of the string $k=1.25 \times 10^{6}$.

A. 2 cm
B. 4 cm

C. 8 cm

D. 16 cm

Answer: A

D Watch Video Solution

14. Cathode rays of velocity $10^{6} \mathrm{~ms}^{-1} \mathrm{~d}$ escribe an approximate circular path of the radius $1 m$ in an electric field $300 \mathrm{~V} \mathrm{~cm}=-1$. If the velocity of cathode rays are doubled. The value of
electric field so that the rays describe the same circular path, will be
A. $120 \mathrm{~V} \mathrm{~cm}^{-1}$
B. $600 \mathrm{~V} \mathrm{~cm}^{-1}$
C. $1200 \mathrm{~V} \mathrm{~cm}^{-1}$
D. $12000 \mathrm{~V} \mathrm{~cm}^{-1}$

Answer: C

D Watch Video Solution

15. A tube of length 1 and radius R carries a steady flow of fluid whose density is ρ and viscosity η. The velocity v of flow is given by $v=v_{0}\left(1-r^{2} / R^{2}\right)$ Where r is the distance of flowing fluid from the axis.
A. $4 \pi \eta l V_{0}$
B. $2 \pi \eta l V_{0}$
C. $\pi \eta l V_{0}$
D. $\frac{2}{3} \pi \eta l V_{0}$

Answer: A

- Watch Video Solution

16. A lens is made of flint glass (refractive index
$=1.5)$. When the lens is immersed in a liquid of refractive index 1.25 , the focal length:
A. Increases by a factor of 1.25
B. Increases by a factor of 2.5
C. Increases by a f actor of 1.2
D. Decreases by a factor of 1.2

- Watch Video Solution

17. In the circuit of CE amplifier, a silicon transistor is used. The value of $V_{\mathrm{CC}}=+20 \mathrm{~V}, R_{L}=3 k \Omega$, collector voltage $=5 v, \beta=100$. Then the base resistance R_{B} should be $\times 10^{5} \Omega$
(Take input voltage drop across Si transistor =
0.7 V)

A. $3.86 \times 10^{6} \Omega$
B. $2.16 \times 10^{4} \Omega$
C. $1.36 \times 10^{4} \Omega$
D. $5.44 \times 10^{5} \Omega$

Answer: A

D Watch Video Solution

18. Calculate the compressional force required
to prevent the metallic rod length $l c m$ and
cross-sectional area $A \mathrm{~cm}^{2}$ when heated
through $t^{\circ} C$, from expanding along length
wise. The Young's modulus of elasticity of the metal is E and mean coefficient of linear expansion is α per degree Celsius
A. $E A \alpha t$

$$
\begin{aligned}
& \text { B. } \frac{E A \alpha t}{(1+\alpha t)} \\
& \text { C. } \frac{E A \alpha t}{(1-\alpha t)} \\
& \text { D. } \frac{E l \alpha t}{}
\end{aligned}
$$

Answer: B

D Watch Video Solution

19. If $E=$ energy,$G=$ gravitational constant, I
=impulse and $M=$ mass, then dimensions of
$G I M^{2}$

E^{2}
 A. Time

B. Mass

C. Length
D. Force

Answer: A

- Watch Video Solution

20. A band playing music at a frequency f is moving towards a wall at a speed v_{b}. A motorist is following the band with a speed
v_{m}. If v is the speed of sound, obtain an expression for the beat frequency heard by the motorist.
A. $\frac{\left(v+v_{m}\right) f}{v+v_{0}}$
B. $\frac{\left(v+v_{m}\right) f}{v-v_{0}}$
C. $\frac{2 v_{0}\left(v+v_{m}\right) f}{v^{2}-v_{0}^{2}}$
D. $\frac{2 v_{m}\left(v+v_{b}\right) f}{v^{2}-v_{b}^{2}}$

Answer: C

D Watch Video Solution

21. The radius of germanium $(G e)$ nuclide is measured to be twice the radius of ${ }_{\cdot}^{9} \mathrm{Be}$. The number of nucleons in $G e$ are

D Watch Video Solution

22. In the figure, a conducting rod of length
$l=1$ meter and mass $m=1 \mathrm{~kg}$ moves with
initial velocity $u=5 m / s$. On a fixed
horizontal frame containing inductor $L=2 H$
and resistance $R=1 W . P Q$ and $M N$ are smooth, conducting wires. There is a uniform magnetic field of strength $B=1 T$. Initially
there is no current in the inductor. Find the total charge in coulomb, flown through the inductor by the time velocity of rod becomes $v_{f}=1 m / s$ and the rod has travelled a
distance $x=3$ meter.

- Watch Video Solution

23. A rod of length $l=2 m$ is maintained to
rotate with a constant angular velocity
$\omega=1 \mathrm{rad} / \mathrm{s}$ about vertical axis passing
through one end (fig). There is a spring of
spring constant $k=1 N / m$ which just encloses rod inside it in natural length. One end of the spring is attached to axis of rotation. S is sleeve of mass $m=1 \mathrm{~kg}$ which can just fix on rod. All surfaces are smooth.

With what minimum kinetic energy (in J)
sleeve should be projected so that it enters on
the rod without impulse and completely compresses the spring.

24. An inteference is observed due to two coherent sources A and B separated by a distance 4λ along Y-axis, where λ is the wavelength of light. A detector 'D' is moved alog the positive X-axis. Find the total number of maxima observe on the X -axis excluding the points $x=0$ and $x=\infty$?

D Watch Video Solution
25. In a photoelectric experiment a parallel
beam of monochromatic light with power of

200W is incident on a perfectly absorbing
cathode of work function 6.25. The frequency of light is just above the threshold frequency
so that the photoelectrons are emitted with negligible kinetic energy. Assume that the photoelectron emission efficiency is 100%. A potential difference of 500 V is applied between the cathode and the anode. All the emitted electrons are incident normally on the anode and are absorbed. The anode
experiences a force $n \times 10^{-4} N$ due to the impact of the electrons. The value of n is _______ Mass of the electron $9.1 \times 10^{-31} \mathrm{Kg}$ and charge is $1.6 \times 10^{-19} C$

