

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 107

1. If K_1 and K_2 are maximum kinetic energies of photoelectrons emitted when light of wavelength λ_1 and λ_2 respectively are incident on a metallic surface. If $\lambda_1=3\lambda_2$

then

A.
$$K_1 > \left(rac{K_2}{3}
ight)$$

B. $K_1 < \left(rac{K_2}{3}
ight)$

$$\mathsf{C}.\,K_1=3K_2$$

D.
$$K_2=3K_1$$

Answer: B

2. A solid sphere and a hollow sphere of equal mass and radius are placed over a rough horizontal surface after rotating it about its mass centre with same angular velocity ω_0 . Once the pure rolling starts let v_1 and v_2 be the linear speeds of their centres of mass. Then

A. $v_1=v_2$

 $\mathsf{B}.\,v_1>v_2$

 $\mathsf{C}.\, v_1 o < v_2$

D. Data is insufficient

Answer: C

Watch Video Solution

3. A hollow charged metal sphere has radius r. If the potential difference between its surface and a point at a distance 3r from the centre is V, then electric field intensity at a distance 3ris

A.
$$\frac{V}{6r}$$

B.
$$\frac{V}{4r}$$

C. $\frac{V}{3r}$
D. $\frac{V}{2r}$

Answer: A

4. A sphere of radius 0.1m and mass $8\pi kg$ is attached to the lower end of a steel wire of length 5.0m and diameter $10^{-3}m$. The wire is suspended from 5.22m high ceiling of a room. When the sphere is made to swing as a simple pendulum, it just grazes the floor at its lowest point. Calculate the velocity of the sphere at the lowest position . Young's modulus of steel is $(1.994 \times 10^{11} N/m^2)$.

A.
$$7.7ms^{-1}$$

B.
$$4.4ms^{-1}$$

C.
$$2.2ms^{-1}$$

D.
$$8.8ms^{-1}$$

Answer: D

5. A small ring of mass m is constrained to slide along a horizontal wire fixed between two rigid supports. The ring is connected to a particle of same mass by an ideal string & the whole system is released from rest as shown in the figure. If the coefficient of friction between ring A and wire is $\frac{3}{5}$, the ring will start sliding when the connecting string will make an angle θ with the vertical, then θ will be (particle is free to move and ring can slide only)

A. $30^{\,\circ}$

B. 45°

- $\mathsf{C.}\,60^\circ$
- D. None of these

Answer: B

6. Estimate the distance for which for which ray optics is good approximation for an aperture of 4mm and wavelength 400nm.

A. 24 m

B. 40 m

C. 18 m

D. 30 m

Answer: B

7. A solid sphere of uniform density and radius R applies a gravitational force of attraction equal to F_1 on a particle placed at P, distance 2R from the centre O of the sphere. A spherical cavity of radius R/2 is now made in the sphere as shown in figure. The particle with cavity now applies a gravitational force F_2 on same particle placed at P. The radio

$F_2\,/\,F_1$ will be

D. 7

Answer: B

8. A ball is projected from point A with velocity $10ms^{-1}$ perpendicular to the inclined plane as shown in figure. Range of the ball on the inclined plane is

A.
$$\frac{40}{3}m$$

B. $\frac{20}{13}m$
C. $\frac{13}{20}m$
D. $\frac{13}{40}m$

Answer: A

9. If the series limit wavelength of the Lyman series of hydrogen atom is 912Å, then the series limit wavelength of the Balmer series of the hydrogen atom is

A. 912Å

- B. 1824Å
- **C.** 3648Å

D. 456Å

Answer: C

Watch Video Solution

10. A tennis ball with (small) mass m_2 rests on the top of a basketball of mass m_1 which is at a height h above the ground, and the bottom of the tennis ball is at height h + d above the ground. The balls are dropped. To what height does the tennis ball bounce with respect to ground? (Assume all collisions to be elastic and $m_1 > > m_2$)

h

ההההההה

A. h

B. 2h

C. 3h

D. 9h

Answer: D

Watch Video Solution

11. The density of an electron-hole pair in a pure germanium is $3 imes10^{16}m^{-3}$ at room temperature. On doping with aluminium, the

hole density increases to $4.5 imes 10^{22}m^{-3}$. Now the electron density (in m^{-3}) in doped germanium will be

A. $1 imes 10^{10}$

 $\text{B.}\,2\times10^{10}$

 $\text{C.}\,0.5\times10^{10}$

 $\text{D.}\,4\times10^{10}$

Answer: B

12. The potnetial energy for a force field \overrightarrow{F} is given by $U(x,y) = \cos(x+y)$. The force acting on a particle at the position given by coordinates $(0, \pi/4)$ is

Answer: B

13. A long rigid wire lies along the X - axis and carries a current of 10 A in the positive X direction. Round the wire, the external magnetic field is $\overrightarrow{B} = \hat{i} + 2x^2\hat{j}$ with x in meters and B is Tesla. The magnetic force (in SI units) on the segment of the wire between x = 1 m and x = 4 m is

A. 1260

B.
$$\frac{1280}{3}$$

C. 1310

D. 420

Answer: D

Watch Video Solution

14. A point object O is placed on the principal axis of a convex lens of focal length f = 20cmat a distance of 40 cm to the left of it. The diameter of the lens is 10. An eye is placed 60 cm to right of the lens and a distance h below the principal axis. The maximum value of h to

see the image is

A. 0

B. 2.5 cm

C. 5 cm

D. 10 cm

Answer: B

15. A block of the mass of 1 kg is moving on the x -axis. A force F acting on the block is shown. The veloity of the block at time t = 2 s is $-3ms^{-1}$. What is the speed of the block at time t = 4 s?

A.
$$8ms^{-1}$$

B. $2ms^{-1}$

C.
$$3ms^{-1}$$

D. $5ms^{-1}$

Answer: C

16. The time period of oscillation of a simple pendulum is given by $T=2\pi\sqrt{l/g}$ The length of the pendulum is measured as $l=10\pm0.1$ cm and the time period as $T=0.5\pm0.02s$. Determine percentage error

in te value of g.

A. 5~%

 $\mathbf{B.8}~\%$

 $\mathsf{C.}\,7\,\%$

D. None of these

Answer: B

17. Ice starts forming in lake with water at $0^{\circ}C$ and when the atmospheric temperature is $-10^{\circ}C$. If the time taken for 1cm of ice be 7 hours. Find the time taken for the thickness of ice to change from 1cm to 2cm

A. 7 hours

B. 14 hours

C. 10.5 hours

D. 21 hours

Answer: D

18. One mole of ideal gas goes through process
$$P=rac{2V^2}{1+V^2}.$$
 Then change in temperature of gas when volume changes from $V=1m^2$ to $2m^2$ is :

$$A. - \frac{4}{5R}K$$
$$B. \frac{11}{5R}K$$
$$C. - \frac{5}{2R}K$$

Answer: B

19. The isotopic masses of $._1^2 H$ and $._2^4 He$ are 2.0141 and 4.0026 amu respectively and the velocity of light in vacuum is $2.998 \times 10^8 m/s$. Calculate the quantity of energy (in *J*) liberated when two mole of $._1^2 H$ undergo fusion to form one mole of $._2^4 He$

A. $2.3 imes 10^{12}J$

B. $3.3 imes 10^{12}J$

C. $5.3 imes 10^{12}J$

D. $2.9 imes 10^{12}J$

Answer: A

Watch Video Solution

20. A car is moving towards a high cliff. The car driver sounds a horn of frequency f. The reflected sound heard by the driver has a frequency 2f. if v be the velocity of sound,

then the velocity of the car, in the same

velocity units, will be

A.
$$\frac{v}{\sqrt{2}}$$

B. $\frac{v}{3}$
C. $\frac{v}{4}$
D. $\frac{v}{2}$

Answer: B

21. A storage battery of emf 8V and internal resistance is being charged by a 120 V D.C. supply using a series resistor of What is the terminal voltage of the battery during charging? What is the purpose of having a series resistor in the charging circuit?

22. A long solenoid of cross-sectional radius a has a thin insulates wire ring tightly put on its winding, one half of the ring has the resistance η times that of the other half. The magnetic induction produced by the solenoid varies with the time as B = bt, where b is a constant. Find the magnitude of the electric field strength in the ring.

23. In a meter bridge experiment, resistances are connected as shown in figure. The balancing length $l_1 = 55cm$. Now, an unknown resistance x is connected in series with P and the new balancing length is found to be 75 cm. What is the value of The value of 11x (in ohm)? (Given, $P = 4\Omega$)

24. A Carnot reversible engine converts 1/6 of heat input into work. When the temperature of the sink is redused by 62 K, the efficiency of Carnot's cycle becomes 1/3. The sum of temperature (in kelvin) of the source and sink will be

25. The amplitude of a simple pendulum is 10 cm. When the pendulum is at a displacement of 4 cm from the mean position, the ratio of kinetic and potential energies at that point is