©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 108

Physics

1. When an electron jumps from a level $n=4$
to $n=1$, the momentum of the recoiled
hydrogen atom will be
A. $6.8 \times 10^{-27} \mathrm{~kg} \mathrm{~ms}^{-1}$
B. $12.75 \times 10^{-19} \mathrm{~kg} \mathrm{~ms}^{-1}$
C. $13.6 \times 10^{-19} \mathrm{~kg} \mathrm{~ms}^{-1}$
D. zero

Answer: A

D Watch Video Solution
2. An inductor of inductance 2.0 mH is connected across a charged capacitor of capacitance $5.0 \mu F$ and the resulting $L-C$
circuit is set oscillating at its natural
frequency. Let Q denote the instantaneous
change on the capacitor and i the current in
the circuit. It is found that the maximum value of Q is $200 \mu C$.
(a) When $Q=100 \mu C$, what is the value of
$|d i / d t| ?$
(b) When $Q=200 \mu C$, what is the value of i ?
(c)Find the maximum value of i
(d) When i is equal to one-half its maximum
value, what is the value of $|Q|$?

A. 10000

B. 1000

C. 100000

D. 100

Answer: A

D Watch Video Solution

3. The electric field vector at point $P(a, a, a)$ due to three uniformly charged infinite wires 1 ,

2 and 3 kept the x, y and z - axes, respectively
as shown in the shown in figure is (Charge
unit length of each wire is λ)

A. $\frac{\lambda}{3 \pi \varepsilon_{0} a}(\hat{i}+\hat{j}+\hat{k})$
B. $\frac{\lambda}{2 \pi \varepsilon_{0} a}(\hat{i}+\hat{j}+\hat{k})$
C. $\frac{\lambda}{2 \sqrt{2} \pi \varepsilon_{0} a}(\hat{i}+\hat{j}+\hat{k})$
D. $\frac{\sqrt{2} \lambda}{\pi \varepsilon_{0} a}(\hat{i}+\hat{j}+\hat{k})$

Answer: B

D Watch Video Solution

4. Infinite number of masses, each of 1 kg , are
placed along the x-axis at
$x= \pm 1 m, \pm 2 m, \pm 4 m, \pm 8 m, \pm 16 m .$.

The gravitational of the resultant gravitational
potential in term of gravitaitonal constant G
at the origin $(x=0)$ is
A. G
B. 3G
C. 2G
D. 8 G

Answer: C

D Watch Video Solution

5. A black body is at a temperature of 2880 K .

The energy of radiation emitted by this object
with wavelength between 499 nm and 500 nm
is U_{1}, between 999 nm and 1000 nm is U_{2} and
between 1499 nm and 1500 nm is U_{3}. The Wein's constant $b=2.88 \times 10^{6} \mathrm{~nm} \mathrm{~K}$. Then
A. $U_{1}=0$
B. $U_{3}=0$
C. $U_{1}>U_{2}$
D. $U_{2}>U_{1}$

Answer: D
(Watch Video Solution
6. If 2 moles of diatomic gas and 1 mole of
monatomic gas are mixed, then the ratio of specific heats for the mixture is

> A. $\frac{7}{3}$
> B. $\frac{5}{4}$
> C. $\frac{19}{13}$
> D. $\frac{15}{19}$

Answer: C

D Watch Video Solution
7. A wire $a b$ of length I, mass m and resistance

R slides on a smooth thick pair of metallic rails
joined at the bottom as shown in fig. The plane of the rails makes an angle θ with the horizontal. A vertical magnetic field B exist in the region. If the wire slides on the rails at a constant speed v, then the value of B is -

A. $\sqrt{\frac{m g R}{v l^{2} \cos ^{2} \theta}}$
B. $\sqrt{\frac{m g R \cos \theta}{v l^{2} \sin ^{2} \theta}}$
C. $\sqrt{\frac{m g R}{v^{2} l^{2} \sin ^{2} \theta}}$
D. $\sqrt{\frac{m g R \sin \theta}{v l^{2} \cos ^{2} \theta}}$

Answer: D

D Watch Video Solution

8. A truck is moving with a constant velocity of
$54 \mathrm{kmh}^{-1}$. In which direction (angle with the
direction of motion of truck) should a stone be projected up with a velocity of $20 \mathrm{~ms}^{-1}$,
from the floor of the truck of the truck, so as to appear at right angles to the truck, for a person standing on earth ?

$$
\begin{aligned}
& \text { A. } \cos ^{-2}\left(-\frac{3}{4}\right) \\
& \text { B. } \cos ^{-1}\left(-\frac{1}{4}\right) \\
& \text { C. } \cos ^{-1}\left(\frac{2}{3}\right) \\
& \text { D. } \cos ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

Answer: A
9. A particle slides down on a smooth incline of inclination 30°, fixed in an elevator going up with an acceleration $2 m / s^{2}$. The box of incline has width 4 m . The time taken by the
particle to reach the bottom will be

A. $\frac{8}{9} \sqrt{3} s$
B. $\frac{9}{8} \sqrt{3} s$
C. $\frac{4}{3} \sqrt{\frac{\sqrt{3}}{2}} s$
D. $\frac{3}{4} \sqrt{\frac{\sqrt{3}}{2}} s$

Answer: C

D Watch Video Solution

10. Two radiouctive materials X_{1} and X_{2} have decayconstants 10λ and λ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of X_{1}, to that of X_{2} will be $\frac{1}{e}$ after a time,
A. $\frac{1}{10 \lambda}$
B. $\frac{1}{11 \lambda}$
C. $\frac{11}{10 \lambda}$
D. $\frac{1}{9 \lambda}$

Answer: D

- Watch Video Solution

11. Calculate the angular frequency of the system shown in figure. Friction is absent everywhere and the threads, spring and
pulleys are massless. Given that
$m_{A}=m_{B}=m$.

A. $\sqrt{\frac{2 k}{4 m}}$
B. $\sqrt{\frac{4 k}{5 m}}$
C. $\sqrt{\frac{6 k}{7 m}}$
D. $\sqrt{\frac{8 k}{5 m}}$

Answer: B

- Watch Video Solution

12. A bucket water filled upto a height $=15 \mathrm{~cm}$.

The bucket is tied to a rope which is passed over a frictionless light pulley and the other end of the rope is tied to a weight of mass which is half of that of the (bucket + water).

The water pressure above atmospheric pressure at the bottom is
A. 0.5 kPa
B. 1 kPa
C. 5 kPa

D. 20 kPa

Answer: B

D Watch Video Solution

13. A thin equiconvex lens of refractive index
$3 / 2$ is placed on a horizontal plane mirror as
shown in figure. The space between the lens
and the mirror is filled with a liquid of refractive index $4 / 3$. It is found that when a
point object is placed 15 cm above the lens on its principal axis, the object coincides with its own image.

Q. If another liquid is filled instead of water, the object and the image coincide at a distance 25 cm from the lens.

Calculate the refractive index of the liquid.
A. 1.6
B. 3.2
C. 0.8
D. 2

Answer: A

- Watch Video Solution

14. An automobile moves on road with a speed of $54 \mathrm{~km} / \mathrm{h}$. The radius of its wheel is 0.45 m and the moment of inertia of the wheel about its axis of rotation is $3 \mathrm{kgm}^{2}$. If the vehicle is brought to rest in $15 s$, the magnitude of
average torque transmitted by its brakes to the wheel is :
A. $8.58 \mathrm{~kg} \mathrm{~m}^{2} s^{-2}$
B. $10.86 \mathrm{~kg} \mathrm{~m}^{2} s^{-2}$
C. $2.86 \mathrm{~kg} \mathrm{~m}^{2} s^{-2}$
D. $6.66 \mathrm{~kg} \mathrm{~m}^{2} s^{-2}$

Answer: D

D Watch Video Solution

15. If a carrier wave of 1000 kHz is used to carry
the signal, the length of transmitting antenna
will be equal to -
A. 3 m
B. 75 m
C. 600 m
D. 300 m

Answer: D

D Watch Video Solution
16. Two containers of equal volume contain the same gas at pressure P_{1} and P_{2} and absolute temperature T_{1} and T_{2}, respectively. On joining the vessels, the gas reaches a common pressure P and common temperature T. The ratio P / T is equal to

$$
\begin{aligned}
& \text { A. } \frac{p_{1} T_{2}+p_{2} T_{1}}{T_{1} \times T_{2}} \\
& \text { B. } \frac{p_{1} T_{2}+p_{2} T_{1}}{T_{1}+T_{2}} \\
& \text { C. } \frac{1}{2}\left[\frac{p_{1} T_{2}+p_{2} T_{1}}{T_{1} T_{2}}\right] \\
& \text { D. } \left.\frac{p_{1} T_{2}-p_{2} T_{1}}{T_{1} \times T_{2}}\right]
\end{aligned}
$$

Answer: C

D Watch Video Solution

17. If electronic charge e, electron mass m, speed of light in vacuum c and Planck's constant h are taken as fundamental quantities, the permeability of vacuum μ_{0} can be expressed in units of :

$$
\begin{aligned}
& \text { A. }\left(\frac{m c^{2}}{h e^{2}}\right) \\
& \text { B. }\left(\frac{h}{m e^{2}}\right)
\end{aligned}
$$

C. $\left(\frac{h c}{m e^{2}}\right)$
D. $\left(\frac{h}{c e^{2}}\right)$

Answer: D

D Watch Video Solution

18. In Young's double slit experiment, the wavelength of red light is $7800 \AA$ and that of blue light is $5200 \AA$. The minimum value of n for which $n t h$ bright band due to red light
coincides with $(n+1)^{\text {th }}$ bright band due to blue light, is:
A. 1
B. 2
C. 3
D. 4

Answer: B
(Watch Video Solution
19. A source of sound is moving with a velocity
of $50 \mathrm{~ms}^{-1}$ towards a stationary observer.The
observer measures the frequency of sound as

500 Hz .The apparent frequency of sound as
heard by the observer when source is moving away from him with the same speed is (Speed of sound at room temperature $350 \mathrm{~ms}^{-1}$
A. 400 Hz
B. 600 Hz
C. 375 Hz

D. 175.5 Hz

Answer: C

D Watch Video Solution

20. A massless string and a spring connect two
blocks A and B to each other. Block B slides
over a frictionless inclined plane while block A
slides over horizontal surface. Coefficient of
friction between block a A horizontal surface is
$\mu=0.2$. At the instant shown blocks are
moving with constant speed. Mass of block A and energy stored in spring the respectively. $\left[g=10 \mathrm{~m} / \mathrm{s}^{2}, k=1000 \frac{\mathrm{~N}}{\mathrm{~m}}, m_{B}=2 k g\right]$

A. $5 \mathrm{~kg}, 1 \mathrm{~J}$
B. $10 \mathrm{~kg}, 0.05 \mathrm{~J}$
C. $5 \mathrm{~kg}, 0.05 \mathrm{~J}$
D. 10 kg , 1 J

Answer: C

- Watch Video Solution

21. A 5000 kg rocket is set of vertical firing. The exhaust speed is $800 m s^{-1}$. To give an initial upward acceleration of $20 \mathrm{~ms}^{-2}$, the amount of gas ejected per second to supply
the needed thrust will be (take, $g=10 \mathrm{~ms}^{-2}$)

D Watch Video Solution

22. A solid body rotates about a stationary axis accordig to the law $\theta=6 t-2 t^{3}$. Here θ, is in radian and t in seconds. Find
(a). The mean values of thhe angular velocity and angular acceleration averaged over the time interval between $t=0$ and the complete stop.
(b). The angular acceleration at the moment when the body stops.

Hint: if $y=y(t)$. then mean/average value of y between t_{1} and t_{2} is

$$
<y \geq\left(\int_{t_{1}}^{t_{2}} y(t) d t\right) \frac{)}{t_{2}-t_{1}}
$$

- Watch Video Solution

23. A battery of internal resistance 4Ω is connected to the network of resistance as
shown. In order to give the maximum power to the network, the value of R should be-

D Watch Video Solution
24. The magnetic needle of a vibration magnetometer makes 12 oscillations per minute in the horizontal component of earth's magnetic field. When an external short bar magnet is placed at some distance along the axis of the needle in the same line it makes 15 oscillations per minute. If the poles of the bar magnet are inter changed, the number of oscillations it takes per minute is
25. The maximum wavelength of radiation that
can produce photoelectric effect in a certain
metal is 200 nm . The maximum kinetic energy
acquired by electron due to radiation of
wavelength 100 nm will be

D Watch Video Solution

