đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 109

Physics

1. The ground state energy of hydrogen atom
is -13.6 eV . If the electron jumps to the
ground state from the $3^{\text {rd }}$ excited state, the wavelength of the emitted photon is
A. $875 \AA$
B. $1052 \AA$
C. $752 \AA$
D. $1026 \AA$

Answer: D

D Watch Video Solution
2. Two massless string of length 5 m hang from the ceiling very near to each other as shown in the figure. Two balls A and B of masses 0.25 kg and 0.5 kg are attached to the string. The ball A is released from rest at a
height $0.45 m$ as shown in the figure. The collision between two balls is completely elastic. Immediately after the collision, the kinetic energy of ball B is $1 J$ The velocity of
ball A just after the collision is

A. $5 \mathrm{~m} \mathrm{~s}^{-1}$ to the right
B. $5 \mathrm{~m} \mathrm{~s}^{-1}$ to the left
C. $1 \mathrm{~m} \mathrm{~s}^{-1}$ to the right
D. $1 \mathrm{~m} \mathrm{~s}^{-1}$ to the left

Answer: D

D Watch Video Solution

3. What is the value of linear velocity, if

$$
\vec{\omega}=3 \hat{i}-4 \hat{j}+\hat{k} \text { and } \vec{r}=5 \hat{i}-6 \hat{j}+6 \hat{k} ?
$$

A. $6 \hat{i}+2 \hat{j}-3 \hat{k}$
B. $-18 \hat{i}-13 \hat{j}+2 \hat{k}$
C. $18 \hat{i}+13 \hat{j}-2 \hat{k}$
D. $8 \hat{i}-2 \hat{j}+8 \hat{k}$

Answer: B

- Watch Video Solution

4. In the circuit shown switch S is connected to position 2 for a long time and then joined to position 1.The total heat produced in resistance R_{2} is:

A. $\frac{L E^{2}}{2 R_{2}^{2}}$
B. $\frac{L E^{2}}{2 R_{1}^{2}}$
C. $\frac{L E^{2}}{2 R_{1} R_{2}}$
D. $\frac{L E^{2}\left(R_{1}+R_{2}\right)^{2}}{2 R_{1}^{2} R_{2}^{2}}$

Answer: A

D Watch Video Solution

5. Two magnets of equal mass are joined at 90° each other as shown in figure. Magnet
$N_{1} S_{1}$ has a magnetic moment $\sqrt{3}$ times that of $N_{2} S_{2}$. The arrangement is pivoted so that it
is free to rotate in horizontal plane. When in equilibrium, what angle should $N_{1} S_{1}$ make with magnetic meridian?

A. 75°
B. 60°
C. 30°

$$
\text { D. } 45^{\circ}
$$

Answer: C

D Watch Video Solution

6. An artificial satellite is moving in a circular orbit around the earth with a speed equal to
half the magnitude of escape velocity from the earth. The height of the satellite above the surface of the earth is x R. Find the value of x.
A. R
B. 2 R
C. 3 R
D. 4 R

Answer: A

D Watch Video Solution

7. A cup of tea cools from $65.5^{\circ} \mathrm{C}$ to $62.55^{\circ} \mathrm{C}$

in one minute is a room at $225 .{ }^{\circ} C$. How long
will the same cup of tea take to cool from
$46.5^{\circ} \mathrm{C}$ to $40.5^{\circ} \mathrm{C}$ in the same room ?
(Choose the nearest value in min).
A. 4 min
B. 2 min
C. 1 min
D. 3 min

Answer: A
(Watch Video Solution
8. Infinite number of straight wires each carrying current I are equally placed as shown in the figure Adjacent wires have current in opposite direction Net magnetic field at point
P is

A. $\frac{\mu_{0} I}{4 \pi} \frac{\ln 2}{\sqrt{3} a} \hat{k}$
B. $\frac{\mu_{0} I}{4 \pi} \frac{\ln 4}{\sqrt{3} a} \hat{k}$
C. $\frac{\mu_{0} I}{4 \pi} \frac{\ln 4}{\sqrt{3} a}(-\hat{k})$
D. Zero

Answer: B

- Watch Video Solution

9. A particle is thrown over a triangle from one

 end of a horizontal base and after grazing thevertex falls on the other end of the base. If α and β be the base angles and θ the angle
$\tan \theta=\tan \alpha+\tan \beta$.
A. $\tan \alpha+\tan \beta$
B. $\sin \alpha+\sin \beta$
C. $\tan \alpha+\sin \beta$
D. $\cos \alpha+\cos \alpha$

Answer: A
(Watch Video Solution
10. A radioactive nucleus (initial mass number

A and atomic number Z) emits 3α-particles
and 2 positrons. The ratio of number of neutrons to that of protons in the final nucleus will be

$$
\begin{aligned}
& \text { A. } \frac{A-Z-8}{Z-4} \\
& \text { B. } \frac{A-Z-4}{Z-8} \\
& \text { C. } \frac{A-Z-12}{Z-4} \\
& \text { D. } \frac{A-Z-4}{Z-2}
\end{aligned}
$$

- Watch Video Solution

11. A particle of mass m moving along x-axis
has a potential energy $U(x)=a+b x^{2}$ where
a and b are positive constant. It will execute simple harmonic motion with a frequency determined by the value of
A. b and m alone
B. b, a and m alone
C. b alone

D. b and a alone

Answer: A

- Watch Video Solution

12. When light of wavelength 300 nm or less
falls on aphotoelectric emitter A,
photoelectrons are emitted. For another emitter B, light of wavelength 600 nm is sufficient for releasing photoelectorns. The ratio of the work function of emitter A to B is
A. $1: 4$
B. $4: 1$
C. 2:1
D. 1:2

Answer: C

D Watch Video Solution

13. The edges of an aluminum cube are 10 cm
long. One face of the cube is firmly fixed to a
vertical wall. A mass of 100 kg is then attached
to the opposite face of the cube. Shear modulus of aluminum is $25 \times 10^{9} \mathrm{~Pa}$, the vertical deflection in the face to which mass is attached is

$$
\begin{aligned}
& \text { A. } 3.92 \times 10^{-7} \mathrm{~m} \\
& \text { B. } 5.98 \times 10^{-7} \mathrm{~m} \\
& \text { C. } 2.72 \times 10^{-7} \mathrm{~m} \\
& \text { D. } 4.82 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

Answer: A

14. In the figure shown, the plank is being pulled to the right with a constant speed v. If the cylinder does not slip then:

A. The speed of centre of mass of the cylinder is $2 v$
B. The speed of the centre of mass of the
cylinder is v
C. The angular velocity of the cylinder is $\frac{v}{r}$
D. The angular velocity of the cylinder is
zero

Answer: C

- Watch Video Solution

15. The contribution in the total current
flowing through a semiconductor due to electrons and holes are $\frac{3}{4}$ and $\frac{1}{4}$ respectively. If the drift velocity of electrons is $\frac{5}{2}$ times that of holes at this temperature, then the ratio of concentration of electrons and holes is
A. 6:5
B. 5:6
C. 3:2
D. 2:3

Answer: A

- Watch Video Solution

16. Determine the lengths of an iron rod and copper ruler at $0^{\circ} \mathrm{C}$ if the difference in their lengths at $50^{\circ} \mathrm{C}$ and $450^{\circ} \mathrm{C}$ is the same and is equal to 2 cm . the coefficient of linear expansion of iron $=12 \times 10^{-6} / K$ and that

$$
\text { of copper }=17 \times 10^{-6} / K .
$$

A. $20.06 \mathrm{~m}, 20.08 \mathrm{~m}$

B. $21.0 \mathrm{~m}, 7.00 \mathrm{~m}$

C. $60.30 \mathrm{~cm}, 10.10 \mathrm{~m}$
D. $11.09 \mathrm{~m}, 15.10 \mathrm{~m}$

Answer: A

- Watch Video Solution

17. What is the dimensional formula of gravitational constant ?
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M L^{-1} T^{-1}\right]$
C. $\left[M^{-1} L^{3} T^{-2}\right]$
D. None of these

Answer: C

D Watch Video Solution

18. At $\mathrm{t}=0$, a transverse wave pulse in a wire is
described by the function $y=6 /\left(x^{2}-3\right)$
where x and y are in metres. The function $y(x, t)$
that describes this wave equation if it is
travelling in the positive x direction with a speed of $4.5 m / s$ is

6

$$
\begin{aligned}
& \text { A. } y=\frac{0}{(x+4.5 t)^{3}-3} \\
& \text { B. } y=\frac{6}{\left(x-4.5 t^{2}\right)+3} \\
& \text { C. } y=\frac{6}{(x+4.5 t)^{2}-3} \\
& \text { D. } y=\frac{6}{(x-4.5 t)^{2}+3}
\end{aligned}
$$

Answer: D

D Watch Video Solution

19. A uniform chain of length L and mass M is
lying on a smooth table and one-third of its
length is hanging vertically down over the edge of the table. If g is the acceleration due to gravity, the work required to pull the hanging part on to the table is
A. $M g L$
B. $\frac{M g L}{3}$
c. $\frac{M g L}{9}$
D. $\frac{M g L}{18}$

Answer: D

D Watch Video Solution

20. The drift velocity of the electrons in a copper wire of length 2 m under the application of a potential difference of 220 V is $0.5 m s^{-1}$. Their mobility (in $m^{2} v^{-1} s^{-1}$)
A. 2.5×10^{-3}
B. 2.5×10^{-2}
C. 5×10^{2}
D. 4.5×10^{-3}

Answer: D

D Watch Video Solution

21. When an object is viewed with a light of wavelength $6000 \AA$ under a microscope, its resolving power is 10^{4}. The resolving power of the microscope when the same object is viewed with a light of wavelength $4000 \AA$, is $n \times 10^{3}$. The vlaue of n is

Watch Video Solution

22. What is the radius of the imaginary concentric sphere that divides the electrostatic field of a metal sphere of a radius

20 cm and change of $8 \mu C$ in two regions of identical energy?

D Watch Video Solution

23. If one mole of a monoatomic gas
$(\gamma=5 / 3)$ is mixed with one mole of a
diatomic gas $(\gamma=7 / 5)$ the value of γ for the mixture is .

D Watch Video Solution
24. What is the maximum value of the force F
(in newton) such that the block shown in the arrangement, does not move ?

25. An object is placed at a distance of 15 cm
from a convex lenx of focal length 10 cm . On
the other side of the lens, a convex mirror is
placed at its focus such that the image formed by the combination coincides with the object itself. The focal length of the convex mirror is

D Watch Video Solution

