©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 19

Physics

1. In hydrogen spectrum the wavelength of H_{a}
line is 656 nm , where in the spectrum of a distance galaxy H_{a} line wavelength is 706 nm .

Estimated speed of the galaxy with respect to earth is ,
A. $1.2 \times 10^{7} \mathrm{~ms}^{-1}$
B. $2.2 \times 10^{7} \mathrm{~ms}^{-1}$
C. $3 \times 10^{7} m s^{-1}$
D. $1.9 \times 10^{7} \mathrm{~ms}^{-1}$

Answer: B
(Watch Video Solution
2. A silver of radius 4.8 cm is suspended by a
thread in the vacuum chamber . $U V$ light of
wavelength 200 nm is incident on the ball for
some times during which a total energy of
$1 \times 10^{-7} J$ falls on the surface. Assuming on
an average one out of 103 photons incident is
able to eject electron. The potential on sphere
will be
A. 1 V
B. 2 V
C. 3V

D. zero

Answer: C

- Watch Video Solution

3. An underformed spring of spring constant k
is connected to a bead of mass m which can
move along a frictionless rod as shown in the
figure. If the particle strikes the bead at an angle of 45° with the horizontal and sticks to
it, then the maximum elongation of the spring
after the collision is

A. $\frac{v}{4} \sqrt{\frac{m}{2 k}}$
B. $\frac{v}{2} \sqrt{\frac{m}{k}}$
C. $\frac{v}{2} \sqrt{\frac{m}{2 k}}$
D. $\frac{v}{4} \sqrt{\frac{m}{k}}$

Answer: B

- Watch Video Solution

4. A deflection magnetometer is placed with
its arm along the east-west direction (tan A
position) and a short bar magnet is placed symmetrically along its axis at some distance with its north pole pointing towards east. In
this position the needle of the magnetometer shows a deflection of 60°. If we double the
distance of the bar magnet, then the deflection will be

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left[\frac{\sqrt{3}}{8}\right] \\
& \text { B. } \cos ^{-1}\left[\frac{\sqrt{3}}{8}\right] \\
& \text { C. } \tan ^{-1}\left[\frac{\sqrt{3}}{8}\right] \\
& \text { D. } \cot ^{-1}\left[\frac{\sqrt{3}}{8}\right]
\end{aligned}
$$

Answer: C
5. The masses of three copper wires are in the ratio 2:3:5 and their lengths are in the ratio 5:3:2. Then, the ratio of their electrical resistance is
A. 1:9:15
B. 2:3:5
C. 5:3:2
D. $125: 30: 8$

Answer: D

6. A potential difference of 0.75 V applied across a galvanometer causes a current of 15 mA to pass through it. If can be converted into ammeter of range of 25 A , the requried shunt should be
A. 0.8Ω
B. 0.93Ω
C. 0.03Ω
D. 2.0Ω

Answer: C

- Watch Video Solution

7. In an AC circuit the instantaneous values of emf and current are
$e=200 \sin 300 t$
$i=2 \sin \left(300 t+\frac{\pi}{3}\right)$ amp The average power
consumed (in watts) is
A. 200
B. 100
C. 50
D. 400

Answer: B

D Watch Video Solution

8. The plates of a parallel plate capacitor are
charged up to 200 V. A dielectric slab of thickness 4 mm is inserted between its plates.

Then, to maintain the same potential difference between the plates of the capacitor,
the distance between the plates increased by
3.2 mm . The dielectric constant of the dielectric slab is
A. 1
B. 4
C. 5
D. 6

Answer: C

D Watch Video Solution
9. A point charge q is placed at a distance of R
from the centre of a conducting shell of iner radius $2 R$ and outer radius $3 R$. the electric potential at the center of the shell will be

> A. $\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{2 R}\right)$
> B. $\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{4 q}{3 R}\right)$
> C. $\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{5 q}{6 R}\right)$
> D. $\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{5 q}{3 R}\right)$

Answer: C

D Watch Video Solution

10. A cord of length $64 m$ is used to connected a 100 kg astronaut to spaceship whose mass is much larger than that of the astronuat.

Estimate the value of the tension in the cord.

Assume that the spaceship is orbiting near earth surface. Assume that the spaceship and
the astronaut fall on a straight line from the earth centre. the radius of the earth is 6400 km .

$$
\text { A. } 3 \times 10^{-2} N
$$

B. $2 \times 10^{-2} N$
C. $4 \times 10^{-2} N$
D. $5 \times 10^{-2} N$

Answer: A

D Watch Video Solution

11. Two masses m and M are attached to the strings as shown in the figure. If the system is
in equilibrium, then

A. $\tan \theta=1+\frac{2 M}{m}$
B. $\tan \theta 1-\frac{2 m}{M}$
C. $\tan \theta 1-\frac{M}{2 m}$
D. $\tan \theta 1-\frac{m}{2 M}$

Answer: A

- Watch Video Solution

12. Ice starts forming in lake with water at $0^{\circ} C$
and when the atmospheric temperature is
$-10^{\circ} C$. If the time taken for 1 cm of ice be 7 hours. Find the time taken for the thickness of ice to change from 1 cm to 2 cm
A. 7 hours
B. 14 hours
C. 10.5 hours
D. 21 hours

Answer: D

D Watch Video Solution

13. A very long cylindrical wire is carrying a current I_{0} distriuted uniformly over its crosssection area. O is the centre of the crosssection of the wire and the direction of
current in into the plane of the figure. The
value $\int_{A}^{B} \vec{B} \cdot \overrightarrow{d l}$ along the path $A B$ (from A to B) is

A. $\mu_{0} I_{0}$
B. $-\frac{\mu_{0} I_{0}}{6}$
C. $\frac{\mu_{0} I_{0}}{6}$
D. $\frac{\mu_{0} I_{0}}{3}$

Answer: B

D Watch Video Solution

14. The inclined plane $O A$ rotates in vertical
plane about a horizontal axis through O with a constant counter clockwise velocity $\omega=3$ $\mathrm{rad} / \mathrm{sec}$. As it passes the position $\theta=0$, a small $\mathrm{m}=1 \mathrm{~kg}$ is placed upon it at a radial distance $r=0.5 \mathrm{~m}$. if the mass is observed to be
at rest with respect to inclined plane. The value of static friction force at $\theta=37^{\circ}$ between the mass and the incline plane

A. $\frac{3}{16}$
B. $\frac{9}{16}$
C. $\frac{4}{9}$
D. $\frac{5}{9}$

Answer: A

D Watch Video Solution

15. The time period of oscillations of a block attached to a spring is t_{1}. When the spring is replaced by another spring, the time period of the block is t_{2}. If both the springs are connected in series and the block is made to
oscillate using the combination, then the time period of the block is

$$
\begin{aligned}
& \text { A. } T=t_{1}+t_{2} \\
& \text { B. } T^{2}=t_{1}^{2}+t_{2}^{2} \\
& \text { C. } T^{-1}=t_{1}^{-1}+t_{2}^{-1} \\
& \text { D. } T^{-2}=t_{1}^{-2}+t_{2}^{-2}
\end{aligned}
$$

Answer: B
(Watch Video Solution
16. In a photoelectric experiment the relation between applied potential difference between cathode and anode V and the photoelectric current cathode and anode V and the photoelectric current I and was found to be
shown in graph below. If planck's constant $h=6.6 \times 10^{-34} \mathrm{Js}$, the frequency of incident radiation would be nearly (in s^{-1})

A. $0.436 \times 10^{18} \mathrm{~Hz}$
B. $0.436 \times 10^{17} \mathrm{~Hz}$
C. $0.775 \times 10^{16} \mathrm{~Hz}$
D. $0.775 \times 10^{15} \mathrm{~Hz}$

Answer: C

D Watch Video Solution

17. A liquid drop having surface energy E is spread into 512 droplets of same size. The final surface energy of the droplets is
A. 2 E
B. 4 E
C. 8 E
D. 12E

Answer: C

D Watch Video Solution

18. A vessel completely filled with water has holes ' A ' and ' B ' at depths ' h ' and ' $3 h$ ' from the top respectively. Hole ' A ' is a square of side ' L '
and ' B ' is circle of radius ' r '. The water flowing out per second from both the holes is same.

Then 'L' is equal to

$$
\begin{aligned}
& \text { A. } r^{\frac{1}{2}}(\pi)^{\frac{1}{2}}(3)^{\frac{1}{2}} \\
& \text { B. } r(\pi)^{\frac{1}{4}}(3)^{\frac{1}{4}} \\
& \text { C. } r(\pi)^{\frac{1}{2}}(3)^{\frac{1}{4}} \\
& \text { D. } r^{\frac{1}{2}}(\pi)^{\frac{1}{3}}(3)^{\frac{1}{2}}
\end{aligned}
$$

Answer: C

- Watch Video Solution

19. A thin prism of angle 15° made of glass of refractive index $\mu_{1}=1.5$ is combined with another prism of glass of refractive index $\mu_{2}=1.75$. The combination of the prism produces dispersion without deviation. The angle of the second prism should be
A. 5°
B. 7°
C. $\frac{10^{\circ}}{3}$
D. 1.2°

Answer: C

- Watch Video Solution

20. The outpout Y of the logic circuit shown in
figure is best represented as

A. $\bar{A}+\bar{B} . \bar{C}$
B. $\bar{A}+\bar{B} . C$
c. $\bar{A}+B . \bar{C}$
D. $(\bar{A}+\bar{B}) C$

Answer: D

D Watch Video Solution

21. A uniform thin hemispherical shell is kept at rest and in equilibrium on an inclined plane of angle of inclination $\theta=30^{\circ}$ as shown in figure. If the surface of the inclined plane is sufficiently rough to prevent sliding then the
angle α made by the plane of hemisphere with inclined plane is :

- Watch Video Solution

22. A thin equiconvex lens of refractive index
$3 / 2$ is placed on a horizontal plane mirror as shown in figure. The space between the lens
and the mirror is filled with a liquid of refractive index $4 / 3$. It is found that when a point object is placed 15 cm above the lens on its priincipal axis, the object coincides with its own image.

Q. If another liquid is filled instead of water, the object and the image coincide at a distance 25 cm from the lens.

Calculate the refractive index of the liquid.

D Watch Video Solution

23. In young's double-slit experiment, both the
slits produce equal intensities on a screen. A

100\% transparent thin film of refractive index
$\mu=1.5$ is kept in front of one of the slits, due
to which the intensity at the point O on the
screen becomes 75% of its initial value. If the
wavelength of monochromatic light is 720 nm ,
then what is the minimum thickness (in nm) of
the film?

D Watch Video Solution

24. When the forwward bias voltage of a diode
is changed from 0.6 V to 0.7 V the current changes from 5 mA to 15 mA . Then its forward

- Watch Video Solution

25. Two wires are fixed in a sanometer. Their tension are in the ratio $8: 1$ The lengths are in the ratio $36: 35$ The diameter are in the ratio

4:1 Densities of the materials are in the ratio
$1: 2$ if the lower frequency in the setting is 360 Hz . The beat frequency when the two wires are sounded together is

- Watch Video Solution

