©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 22

Physics

1. An electron of a stationary hydrogen aton
passes form the fifth enegry level to the ground level. The velocity that the atom
acquired as a result of photon emission will be
(m is the mass of the electron, R, Rydberg constanrt and h, Planck's constant)

$$
\begin{aligned}
& \text { A. } \frac{24 h R}{25 m} \\
& \text { B. } \frac{25 h R}{25 m} \\
& \text { C. } \frac{24 m}{25 h R} \\
& \text { D. } \frac{25 m}{24 h R}
\end{aligned}
$$

Answer: A

D Watch Video Solution

2. A uniform solid right circular cone of base radius R is joined to a uniform solid hemisphere of radius R and of the same density, so as to have a common face. The centre of mass of the composite solid lies on
the common face. The height of the cone is:

A. $2 r$
B. $\sqrt{3} r$
C. $3 r$

D. $\sqrt{6} r$

Answer: B

D Watch Video Solution

3. The distance of two points on the axis of a magnet from its centre is 10 cm and 20 cm respectively. The ratio of magnetic intensity at these points is $12.5: 1$. The length of the magnet will be
A. 5 cm
B. 25 cm
C. 20 cm
D. 10 cm

Answer: D

D Watch Video Solution

4. A cylindrical conductor has length l and area of cross section A. Its conductivity changes with distance (x) from one of its ends as $\sigma=\sigma_{0} \frac{l}{x} .\left[\sigma_{0}\right.$ is a constant $]$. Calculate
electric field inside the conductor as a
function of x, when a cell of emf V is connected across the ends.

$1 \longleftarrow x \rightarrow 1$
A. $\frac{2 V x}{l^{2}}$
B. $\frac{3 \sqrt{l}}{3 A \sigma_{0}}$
C. $\frac{\sqrt{l}}{3 A \sigma_{0}}$
D. $\frac{4 \sqrt{l}}{3 A \sigma_{0}}$

Answer: A

D Watch Video Solution

5. Five identical plates of equal area A are
placed parallel to each other and at equal
distance d from each other as shown in the
figure. The effective capacity of the system
between the terminals A and B is

A. $\frac{3}{5} \frac{\varepsilon_{0} A}{d}$
B. $\frac{5}{4} \frac{\varepsilon_{0} A}{d}$
C. $\frac{5}{3} \frac{\varepsilon_{0} A}{d}$
D. $\frac{4}{5} \frac{\varepsilon_{0} A}{d}$

- Watch Video Solution

6. Two cells of E.M.F. E_{1} and $E_{2}\left(E_{2}>E_{1}\right)$ are connected in series in the secondary circuit of
a potentiometer experiment for determination of E.M.F. The balancing length is found to be 825 cm . Now when the terminals to cell E_{1} are reversed, then the balancing length is found to be 225 cm . The ratio of E_{1} and E_{2} is
A. 2:3
B. $4: 7$
C. 7:4

D. none of these

Answer: B

D Watch Video Solution

7. A current carrying wire is placed in the grooves of an insulating semicircular disc of radius ' R ', as shown in Fig. The current enters at point A and leaves from point B. Determine
the magnetic field at Point D.

A. $\frac{\mu_{0} I}{8 \pi R \sqrt{3}}$
B. $\frac{\mu_{0} I}{4 \pi R \sqrt{3}}$
C. $\frac{\sqrt{3} \mu_{0} I}{4 \pi R}$
D. none of these

Answer: B

- Watch Video Solution

8. The minimum force required to move a body up an inclined plane is three times the minimum force required to prevent it from
sliding down the plane. If the coefficient of
friction between the body and the inclined plane is $\frac{1}{2 \sqrt{3}}$, the angle of the inclined plane is
A. 60°
B. 45°
C. 30°
D. 15°

Answer: C

- Watch Video Solution

9. Consider the figure here. A particle of mass
m is constrain to move inside a smooth
vertical groove of radius R and is connected to
a light spring of spring constant K in equilibrium. O is centre of the groove. X and y
are horizontal and vertical axes respectively.

Different physical parameters are related as
$2 K R=7 m g$. Angular frequency of the oscillations, if the particle is slightly displaced
from the shown equilibrium position is

A. $\sqrt{\frac{g}{R}}$
B. $\sqrt{\frac{g}{2 R}}$
C. $2 \sqrt{\frac{g}{R}}$
D. $\sqrt{\frac{2 g}{R}}$

Answer: C

D Watch Video Solution

10. If the electron in hydrogen atom jumps
from second Bohr orbit to ground state and
difference between energies of the two states
is radiated in the form of photons. If the work
function of the material is $4.2 e V$, then

stopping potential is

[Energy of electron in nth orbit
$\left.=-\frac{13.6}{n^{2}} e V\right]$
A. $2 V$
B. $4 V$
C. 6 V
D. 8 V

Answer: C

D Watch Video Solution
11. The work done in blowing a soap bubble of volume V is W. The work done in blowing a soap bubble of volume $2 V$ is
A. W
B. 2 W
C. $\sqrt{2} W$
D. $4^{1 / 4} W$

Answer: D
12. A sphere of radius R is gently dropped into
liquid of viscosity η in a vertical uniform tube.
It attains a terminal velocity v . Another sphere of radius $2 R$ when dropped into the same liquid, will attain its terminal velocity.
A. v
B. 2 v
C. 4 v
D. 9 v

- Watch Video Solution

13. A thin converging lens of focal length $f=25$
cm forms the image of an object on a screen placed at a distance of 75 cm from the lens.

Now the screen in moved closer to the lens by
a distance of 25 cm . The distance through
which the object has to be shifted so that its
image on the screen is sharp again is
A. 37.5 cm
B. 16.25 cm

C. 12.5 cm

D. 13.5 cm

Answer: C

D Watch Video Solution

14. In a diagram shown, a rod of mass M has been fixed on a ring of the same mass. The whole system has been placed on a perfectly rough surface. The system is gently displaced so that the ring starts rolling. The velocity of
the centre of the ring when the rod becomes
horizontal is (the length of the rod is equal to
the radius of the ring)

Perfectly rough surface

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{3 g R}{10}} \\
& \text { B. } \sqrt{\frac{5 g R}{3}}
\end{aligned}
$$

C. $\sqrt{\frac{3 g R}{7}}$
D. $\sqrt{\frac{2 g R}{9}}$

Answer: A

D Watch Video Solution

15. The current gain for a common emitter amplifier is 69. If the emitter current is 7 mA , the base current is
A. 0.1 mA
B. 1 mA
C. 0.2 mA
D. 2 mA

Answer: A

D Watch Video Solution

16. Two vessel separately contains two ideal gases A and B at the same temperature, the pressure of A being twice that of B. under such conditions, the density of A is found to be 1.5
times the density of B. the ratio of molecular weight of A and B is
A. $\frac{3}{4}$
B. 2
C. $\frac{1}{2}$
D. $\frac{2}{3}$

Answer: A
(Watch Video Solution
17. The length of an object is measured using a
vernier system whose main scale is 30 cm long
with 600 divisions. If 19 divisions of the main
scale coincide with 20 divisions of the vernier scale, then its least count is
A. 0.25 cm
B. 0.025 cm
C. 0.35 cm
D. 0.0025 cm
18. Two polaroids are crossed. If now one of
them is rotated through 30° and unpolarised
light of intensity I_{0} is incident on the first polaroid, then the intensity of transmitted light will be
A. $\frac{I_{0}}{4}$
B. $\frac{3 I_{0}}{4}$
C. $\frac{3 I_{0}}{8}$
D. $\frac{I_{0}}{8}$

Answer: D

- Watch Video Solution

19. A closed and an open organ pipe have the same length. When they are vibrating simultaneously in their first overtone, they produce three beats. The length of the open pipe is now made one third the original length and one of its ends is closed. On the other
hand, the length of the closed pipe is made
three times the original length. The number of
beats produced when they vibrate with fundamental frequencies will be
A. 8
B. 14
C. 17
D. 8

Answer: A

20. Power of the only force acting on a particle of mass $\mathrm{m}=1 \mathrm{~kg}$ moving in straight line depends on its velocity as $P=v^{2}$ where v is in m / s and P is in watt. If initial velocity of the particle is $1 \mathrm{~m} / \mathrm{s}$, then the displacement of the particle in $\ln 2$ second will be :
A. $(\ln 2-1) m$
B. $(\ln 2)^{2} m$
C. $1 m$
D. $2 m$

Answer: C

- Watch Video Solution

21. The power dissipated (in watt) in 3Ω resistance in the following circuit is
4.5 V

A.
B.
C.
D.

Answer: 0.75

D Watch Video Solution

22. In $L C R$ circuit current resonant frequency
is 600 Hz and half power points are at 650 and

550 Hz . The quality factor is

- Watch Video Solution

23. The plates of a parallel plate capacitor are charged to a potential difference of 117 V and then connected across a resistor. The potential difference across the capacitor decreases exponentially with to time. After 1 s the potential difference between the plates is 39 V , then after 2 s from the start, the potential difference (in V) between the plates is
24. A carnot engine has efficiency $1 / 5$.

Efficiency becomes $1 / 3$ when temperature of sink is decreased by 50 K What is the temperature (in Kelvin) of sink ?

- Watch Video Solution

25. In optical communication system operating
at 1200 nm , only 2% of the source frequency is
available for TV transmission having a
bandwidth of 5 MHz . The number of TV channels that can be transmitted is
(Watch Video Solution
