©゙’doubtnut
 India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 29

Physics

1. A block of mass $m=0.1 \mathrm{~kg}$ is released from a height of 4 m on a curved smooth surface. On the horizontal
surface, path $A B$ is smooth and path $B C$ offers
coefficient of friction $\mu=0.1$. If the impact of block
with the vertical wall at C be perfectely elastic, the total distance covered by the block on the horizontal surface before coming to rest will be (take $\left.g=10 m s^{-2}\right)-$

A. 29 m
B. 49 m
C. 59 m
D. 109 m

Answer: C
2. A source and an observer are situated on two perpendicular tracks as shown in the figure the observer is at rest and source is moving with a speed $50 \mathrm{~m} / \mathrm{s}$ the source emits sound waves of frequency 90 Hz which travel in the medium with velocity $200 \mathrm{~m} / \mathrm{s}$ the frequency of sound heard by observer when the source crosses the origin is

A. 70 Hz
B. 80 Hz
C. 75 Hz
D. 85 Hz

Answer: B

- Watch Video Solution

3. If speed (V),acceleration (A) and force (F) are considered as fundamental units, the dimesnion of Young 's modulus will be :
A. $\left[V^{-3} F a\right]$
B. $\left[V^{-4} F^{2} a^{2}\right]$
C. $\left[V^{-4} F a^{2}\right]$
D. $\left[V^{-4} F^{2} a\right]$

Answer: C

D Watch Video Solution

4. Two identical calorimeters A and B contain an equal quantity of water at $20^{\circ} \mathrm{C}$. A 5 g piece of metal X of specific heat 0.2 cal g ${ }^{-1} .{ }^{\circ} C^{-1}$ is dropped into A and 5 g piece of metal Y is dropped into B . The equilibrium temperature in A is $22^{\circ} \mathrm{C}$ and that in B is $23^{\circ} \mathrm{C}$. The intial temperature of both the metals was
$40^{\circ} \mathrm{C}$. The specific heat of metal Y (in cal g $\left.{ }^{-1} \cdot{ }^{\circ} C^{-1}\right)$ is
A. $\frac{27}{85}$
B. $\frac{54}{85}$
C. $\frac{81}{85}$
D. 0.4

Answer: A

D Watch Video Solution

5. In a CE transistor amplifier, the audio signal voltage across the collector resistance of $2 k \Omega$ is $2 V$. If the
base resistance is $1 k \Omega$ and the current amplification of the transistor is 100 , the input signal voltage is:
A. 10 mV
B. 1 mV
C. 0.1 V
D. 1 V

Answer: A

D Watch Video Solution
6. The following arrangement performs the logic function of

A. AND
B. OR
C. NARD
D. NOR

Answer: D

- Watch Video Solution

7. A block of mass m is attached to one end of a light string which is wrapped on a disc of mass 2 m and radius R. The total length of the slack portion of the string is 1 . The block is released from rest. The angular velocity of the disc just after the string becomes taut

C. $\sqrt{\frac{2 g l}{3 R^{2}}}$
D. $\sqrt{\frac{3 g l}{2 R^{2}}}$

Answer: B

- Watch Video Solution

Glass

8.

A ray of light is incident at the glass-water interface at
an angle i it emerges finnaly parallel to the surface of water, then the value of μ_{g} would be
A. $\left(\frac{4}{3}\right) \sin (i)$
B. $\frac{1}{\sin (i)}$
C. $\frac{4}{3}$
D. 1

Answer: B

D Watch Video Solution

9. A hemispherical bowl just floats without sinking in a
liquid of density $1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. If outer diameter
and the density of the bowl are $1 m$ and $2 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}$ respectively, then the inner diameter of bowl will be
A. 0.88 m
B. 0.78 m
C. 0.98 m
D. 0.68 m

Answer: C

10. Two blocks of masses 5 kg and 10 kg are connected

by a metal wire going over a smooth pulley as shown
in the figure. The breaking stress of the metal wire is
$2 \times 10^{9} \mathrm{Nm}^{-2}$. If $g=10 \mathrm{~ms}^{-2}$, then what is the
minimum radius of the wire which will not break

A. 0.1 mm
B. 0.2 mm
C. 0.05 mm
D. 0.25 mm

Answer: A

- Watch Video Solution

11. A particle of mass ' m ' is attached to three identical springs A, B and C each of force constant ' K ' as shown in figure. If the particle of mass ' m ' is pushed slightly against the spring ' A ' and released the period
of oscillations is

A. $2 \pi \sqrt{\frac{2 m}{k}}$
B. $2 \pi \sqrt{\frac{m}{2 k}}$
C. $2 \pi \sqrt{\frac{m}{k}}$
D. $2 \pi \sqrt{\frac{m}{3 k}}$

Answer: B

D Watch Video Solution

12. The x and y coordinates of a particle at any time t are given by $x=7 t+4 t^{2}$ and $y=5 t$, where x and t is seconds. The acceleration of particle at $t=5 \mathrm{~s}$ is
A. zero
B. $8 m s^{-2}$
C. $20 m s^{-2}$
D. $40 \mathrm{~ms}^{-2}$

Answer: B

D Watch Video Solution

13. The figure shows a current- carrying loop, some part of which is circular and some part is a line

A. $\frac{3 \mu_{0}}{4 a}$
B. $\frac{\mu_{0} l}{4 \pi a}(1+\pi)$
C. $\frac{\mu_{0} l}{8 \pi a}$
D. $\frac{3 \mu_{0} l}{8 a}$

D Watch Video Solution

14. The work of 146 kJ is performed in order to compress one kilo mole of a gas adiabatically and in
this process the temperature of the gas increases by
$7^{\circ} C$. The gas is $\left(R=8.3 \mathrm{ml}^{-1} \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$
A. monoatomic
B. diatomic
C. triatomic
D. a mixture of monoatomic and diatomic

D Watch Video Solution

15. A few spherical equipotential surfaces are shown in the figure. The electric field at any point, at a distance
x from the centre, is

A. $\frac{6}{x^{2}}$ perpendicular to the plane of paper
B. $\frac{600}{x^{2}}$ perpendicular to the plane of paper
C. $\frac{6}{x^{2}}$ radially
D. $\frac{600}{x^{2}}$ radially

Answer: C

D Watch Video Solution

16. The magnetic field within a long, straight solenoid with a circular cross - section of radius r is (as shown) increasing at a rate of α.

The rate of change of flux through a circle with radius a inside the solenoid and with centre on the solenoid axis is
A. $\sqrt{2} \pi a^{2} \alpha$
B. $\frac{1}{2} \pi a^{2} \alpha$
C. $\pi a^{2} \alpha$
D. $\frac{3}{2} \pi \alpha$

Answer: C

D Watch Video Solution

17. n identical cells are joined in series with two cells A and B with reversed polarities. EMF of each cell is E and internal resistance is r. Potential difference across
cell A or B is (n gt 4)
A. $\frac{2 E}{n}$
B. $2 E\left(\frac{1-(1)}{n}\right)$
C. $\frac{4 E}{n}$
D. $2 E\left(1-\frac{2}{n}\right)$

Answer: D

D Watch Video Solution

18. Two circular concentric loops of radii $r_{1}=20 \mathrm{~cm}, r_{2}=30 \mathrm{~cm}$ are placed in the $X-Y$ plane as shown in the figure. A current $\mathrm{I}=7 \mathrm{~A}$ is flowing through them. The magnetic moment of this loop

A. $+0.4 \hat{k}\left(A m^{2}\right)$
B. $-1.5 \hat{k}\left(A m^{2}\right)$
C. $+1.1 \hat{k}\left(A m^{2}\right)$
D. $+1.3 \hat{j}\left(A m^{2}\right)$

Answer: C
19. A spherical cavity is made in a lead sphere of radius

R such that its surface touches the outsides surface of
lead sphere and passes through the centre. The shift
in the centre of mass of the lead sphere as a result of
this following, is

A. $\frac{R}{7}$
B. $\frac{R}{14}$
C. $\frac{R}{2}$
D. R

- Watch Video Solution

20. Identify the missingf product in the given reaction ${ }_{92}{ }^{235} U+{ }_{0}^{1} n \rightarrow ?+{ }_{36}{ }^{92} \mathrm{Kr}+3_{0}{ }^{1} n$
A. ${ }_{56}^{141} B a$
B. ${ }_{56}^{130} \mathrm{Ba}$
C. $-(54)^{139} B a$
D. ${ }_{54}^{141} B a$

Answer: A
21. In the adjacent diagram, CP represents a wavefront and $A O \& B P$, the corresponding two rays. Find the condition on θ for constructive interference at P between the ray BP and reflected ray OP.

22. A silver of radius 1 cm and work function 4.7 eV is
suspended from an insulating thread in freepace. It is under continuous illumination of 200 nm wavelength
light. As photoelectron are emitted the sphere gas
charged and acquired a potential . The maximum number of photoelectron emitted from the sphere is
$A \times 10^{e}$ (where $1<A<10$) The value of z is

- Watch Video Solution

23. An astronaut whose height is 1.50 m floats "feet down" in an orbiting space shuttle at a distance $r=\sqrt[3]{6.67} \times 10^{6} m$ away from the centre of Earth.

The gravitational acceleration at her feet and at her head is found to be $N \times 10^{-6} \mathrm{~ms}^{-2}$. What is the value of N ?
$\left[M_{E}=6 \times 10^{24} \mathrm{~kg}\right.$ and $\left.G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}\right]$

- Watch Video Solution

24. Charges $Q, 2 Q$, and $-Q$ are given to three concentric conducting sphereical shells A, B and C respectively as shown in figure. The ratio of charge on
the inner and outer surface of shell C will be

D Watch Video Solution

25. Two batteries of different emfs and different internal resistances are connected as shown. The
voltage across $A B$ in volts is.

D Watch Video Solution

