©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 32

Physics

1. On moving a charge of 7C from a point x where potential is +5.5 V to a point y where potential is -7.6 V , the work done is -

- Watch Video Solution

2. A smooth sphere of mass M moving with velocity u directly collides elastically with another sphere of mass m at rest. After collision their final velocities are V and v respectively. The value of v is
A. $\frac{2 u M}{m}$
B. $\frac{2 u m}{M}$
C. $(2 u)\left(1+\frac{m}{M}\right)$
D. $\frac{2 u}{1+\frac{M}{m}}$

Answer: C

D Watch Video Solution

3. A magnet is cut in three equal parts by cutting it perpendicular to its length. The time period of original magnet is T_{0} in a uniform magnetic field B. Then, the time period of each part in the same magnetic field is
A. T_{0}
B. $\frac{T_{0}}{2}$
C. $\frac{T_{0}}{2}$
D. $4 T_{0}$

Answer: A

D Watch Video Solution

4. In the circuit shown, the heat produced in
5Ω resistnace due to current through it is
$50 \mathrm{~J} \mathrm{~s}^{-1}$. Then, the heat generated per second
in the 2Ω resistance is

A. $5 J s^{-1}$
B. $4 \mathrm{Js}^{-1}$
C. $9 \mathrm{Js}^{-1}$
D. $10 \mathrm{Js}^{-1}$

Answer: A

D Watch Video Solution
5. Incandescent bulbs are designed by keeping in mind that the resistance of their filament increases with the increase in temperature. If at room temperature, $100 \mathrm{~W}, 60 \mathrm{~W}$ and 40 W bulbs have filament resistances
R_{100}, R_{60} and R_{40}, respectively, the relation between these resistances is

$$
\begin{aligned}
& \text { A. } \frac{1}{R_{100}}=\frac{1}{R_{40}}+\frac{1}{R_{60}} \\
& \text { B. } R_{100}=R_{40}+R_{60}
\end{aligned}
$$

C. $R_{100}>R_{40}>R_{60}$

$$
\text { D. } \frac{1}{R_{100}}>\frac{1}{R_{60}}>\frac{1}{R_{40}}
$$

Answer: D

D Watch Video Solution

6. Consider a thin metallic sheet perpendicular to the plane of the paper moving with speed v in a uniform magnetic field B going into the plane of the paper (See figure.) If charge densities σ_{1} and σ_{2} are induced on the left and
right surfaces, respectively, of the sheet then
(ignore fringe effects.)

$$
\begin{aligned}
& \text { A. } \sigma_{1}=\frac{-\varepsilon_{0} v B}{2}, \sigma_{2}=\frac{\varepsilon_{0} v B}{2} \\
& \text { B. } \sigma=\varepsilon_{0} v B, \sigma_{0}=-\varepsilon_{0} v B \\
& \text { C. } \sigma_{1}=\frac{\varepsilon_{0} v B}{2}, \sigma=\frac{-\varepsilon_{0} v B}{2}
\end{aligned}
$$

$$
\text { D. } \sigma_{1}=\sigma_{2}=\varepsilon_{0} v B
$$

Answer: B

D Watch Video Solution

7. The electric potential at a space point $P(X, Y$,
Z) is given as $V=x^{2}+y^{2}+z^{2}$. The modulus
of the electric field at that point is
proportional to
A. $V^{\frac{1}{2}}$
B. V
C. $V^{\frac{3}{2}}$
D. V^{2}

Answer: A

D Watch Video Solution

8. g_{e} and g_{p} denote the acceleration due to gravity on the surface of the earth and another planet whose mass and radius are twice as that of earth. Then

$$
\begin{aligned}
& \text { A. } g_{p}=\frac{g_{e}}{2} \\
& \text { B. } g_{p}=g_{e} \\
& \text { C. } g_{p}=2 g_{e} \\
& \text { D. } g_{p}=\frac{g_{e}}{\sqrt{2}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

9. One mole of an ideal monoatomic gas undergoes a cyclic process, as shown in the
figure. If the temperature of the gas at state 1
is 300 K and at state 4 is 500 K , then heat exchanged during process $2 \rightarrow 3$, is

A. 1000 R
B. 600 R
C. 750 R
D. 800 R

D Watch Video Solution

10. The strength of the magnetic field at a point r near a long straight current carrying wire is B. The field at a distance $\frac{r}{2}$ will be
A. $\frac{B}{2}$
B. $\frac{B}{4}$
C. 2B
D. 4 B

Answer: C

D Watch Video Solution

11. The block are of mass 2 kg shown is in equlibrium. At $\mathrm{t}=0$ right spring in figure (i) and right string in figure (ii) breaks. Find the ratio of instantaneous acceleration of blocks?

A. 0
B. 1
C. $\frac{25}{24}$
D. None of these

Answer: C

D Watch Video Solution

12. The circuit shown in the figure determine
the current through zener diode. (Given :
zener diode break down voltage $V z=5.8 V$) (A) $7 m A$ (B) $17 m A$ (C) $10 m A$ (D) $15 m A$
A. 5 mA
B. 17 mA
C. 10 mA
D. 7 mA

Answer: C
(Watch Video Solution

13.

Water is flowing through a channel that is 12 m wide with a speed of $0.75 \mathrm{~m} / \mathrm{s}$. the water
then flows into four identical channels that
have a width of 4.0 m the depth of the water does not change as it flows into the four
channels. What is the speed of the water in

one of the smaller channels?

A. $0.56 m s^{-1}$
B. $2.3 m s^{-1}$
C. $0.25 \mathrm{~ms}^{-1}$
D. $0.75 \mathrm{~ms}^{-1}$

Answer: A
(Watch Video Solution
14. There is no change in the volume of a wire due to the change in its length on stretching.

The Poisson's ratio of the material of the wire is

$$
\begin{aligned}
& \text { A. }+\frac{1}{2} \\
& \text { B. }-\frac{1}{2} \\
& \text { C. }+\frac{1}{4} \\
& \text { D. }-\frac{1}{4}
\end{aligned}
$$

Answer: B
15. A linear object is placed along the axis of a mirror as shown in figure. If ' f ' is the focal
length of the mirror then the length of image is-

A. $\frac{(2 f)}{3}$
B. f
C. $\frac{f}{3}$
D. none

Answer: B

D Watch Video Solution

16. Radar waves are sent towards a moving aeroplane and the reflected waves are recived by radar. When aero
A. sound waves
B. light waves
C. radio waves

D. microwaves

Answer: D

D Watch Video Solution

17. In a $\mathrm{p}-\mathrm{n}$ junction diode not connected to any circuit,
A. the potential is the same everywhere
B. the p-type side is at a higher potential
than the n - type side
C. there is an electric field at the junction
directed from the n - side to the p - side
D. there is an electric field at the junction
directed from the p - type side to the n -
type side

Answer: C

D Watch Video Solution

18. If masses of all molecules of a gas are
halved and the speed doubled. Then the ratio of initial and final pressure is :
A. $1: 2$
B. 2:1
C. $4: 1$
D. 1: 4

Answer: A
19. A screw gauge with a pitch of 0.5 mm and a circular scale with 50 divisions is used to measure the thicknes of a thin sheet of

Aluminium. Before starting the measurement,
it is found that when the jaws of the screw gauge are brought in contact, the $45^{t h}$ division coincide with the main scale line and the zero of the main scale is barely visible. what is the thickness of the sheet if the main scale readind is 0.5 mm and the $25 t h$ division coincide with the main scale line?
A. 0.70 mm
B. 0.50 mm
C. 0.75 mm
D. 0.80 mm

Answer: D

D Watch Video Solution

20. If a man of ,mass M jumps to the ground from a height h and his centre of mass moves
a distance x in the time taken by him to 'hit'
the ground the average force acting on him
(assuming his retardation to be constant during his impact with the ground) is :

> A. $\frac{M g h}{x}$
> B. $\frac{M g x}{h}$
> C. $M g\left(\frac{h}{x}\right)^{2}$
> D. $M g\left(\frac{x}{h}\right)^{2}$

Answer: A

D Watch Video Solution
21. In the given circuit, initially switch S_{1} is
closed, and S_{2} and S_{3} are open. After charging of capacitor, at $t=0, S_{1}$ is opened and S_{2} and
S_{3} are closed. If the relation between inductance, capacitance and resistance is $L=4 C R^{2}$, then find the time (in s) after which current passing through capacitor and inductor will be same (given
$R=\operatorname{In} 2 m \Omega, L=2 m H)$

- Watch Video Solution

22. Two blocks P and Q of masses 0.3 kg and
0.4 kg respectively are stuck to each other by
some weak glue as shown in the figure. They hand together at the end of a spring with a
spring constant $\mathrm{k}=200 \mathrm{~N} \mathrm{~m}^{-1}$. The block Q
suddenly falls free due to failure of glue, then
find the maximum kinetic energy of the block P during subsequent motion (in mJ).

Watch Video Solution

23. A lamina is made by removing a small disc of diameter 2R from a bigger disc of uniform mass density and radius 2 R , as shown in the
figure. The moment of inertia of this lamina about axes passing though O and P is
I_{O} and I_{P} respectively. Both these axes are perpendiucalr to the plane of the lamina. The
ratio $\frac{I_{P}}{I_{O}}$ ot the nearest integer is

- Watch Video Solution

24. A conducting ring of circular cross - section
with inner and outer radii a and b is made out
of a material of resistivity ρ. The thickness of
the ring is h. It is placed coaxially in a vertical
cylindrical region of a magnetic field $B=k r t$.

Where k is a positive constant, r is the distance from the axis and t is the time. If the current through the ring is
$I=\left(\frac{k h}{\alpha p}\right)\left[b^{3}-a^{3}\right]$, then what is the value

- Watch Video Solution

25. Earth is moving towards a fixed star with a
velocity of $30 \mathrm{kms}^{-1}$. An observer on earth observes a shift of $0.58 \AA$ in wavelength of light coming from star. What is the actual wavelength of light emitted by star ?

D Watch Video Solution

