©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 36

Physics

1. A system of two identical, uniform discs with
identical circular cavities, is shown in the
figure. Different relevant coordinates are given
in the figure. The coordinates of the centre of mass of the system are

A. $\left(\frac{3 R}{2}, \frac{5 R}{4}\right)$
B. $\left(\frac{19 R}{6}, \frac{5 R}{2}\right)$
C. $\left(\frac{R}{6}, \frac{R}{4}\right)$
D. $\left(\frac{20 R}{6}, \frac{5 R}{2}\right)$

Answer: B

D Watch Video Solution

2. The correct graph which shows the variation

of paramagnetic susceptibility S with
temperature T is

Answer: C

- Watch Video Solution

3. In the given figure, if
$i_{1}=3 \sin \omega t$ and $i_{2}=4 \cos t$, then i_{3} is

A. $5 \sin \left(\omega t+53^{\circ}\right)$
B. $5 \sin \left(\omega t+37^{\circ}\right)$
C. $5 \sin \left(\omega t+45^{\circ}\right)$
D. $5 \cos \left(\omega t+53^{\circ}\right)$

Answer: A
4. In a uniform magneitc field of induced B a
wire in the form of a semicircle of radius r rotates about the diameter of hte circle with an angular frequency ω. The axis of rotation is perpendicular to hte field. If the total resistance of hte circuit is R, the mean power generated per period of rotation is

$$
\begin{aligned}
& \text { A. } \frac{B \pi r^{2} \omega}{2 R} \\
& \text { B. } \frac{\left(B \pi^{2} \omega\right)^{2}}{8 R} \\
& \text { C. } \frac{(B \pi \omega)^{2}}{2 R}
\end{aligned}
$$

D. $\frac{(B \pi r \omega)^{2}}{8 R}$

Answer: B

- Watch Video Solution

5. The potnetial at point A, in the circuit, is
(Point N is grounded, i.e. the potential of that point is zero.)

A. 10 V
B. 7.5 V
C. 5 V
D. 2.5 V

Answer: B

D Watch Video Solution

6. A satellite of mass m orbits around the

Earth of mas M in an elliptical orbit of semi major and semi - minor axes $2 a$ and a
respectively. The angular momentum of the satellite about the centre of the Earth is

$$
\begin{aligned}
& \text { A. } \pi m \sqrt{\frac{G M a}{4}} \\
& \text { B. } \pi m \sqrt{\frac{G M a}{4}} \\
& \text { C. } m \sqrt{\frac{G M a}{8}} \\
& \text { D. } m \sqrt{\frac{G M a}{2}}
\end{aligned}
$$

Answer: D

D Watch Video Solution

7. The amount of heat energy required to
freeze 4.5 g of water of $6^{\circ} \mathrm{C}$ to ice at $0^{\circ} \mathrm{C}$ is

$$
\left[S=41900 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}, L=3.33 \times 10^{5} \mathrm{Jkg}^{-1}\right]
$$

A. 1612 J
B. 1512 J
C. 1132 J
D. 1499 J

Answer: A

- Watch Video Solution

8. An ideal gas $(\gamma=1.5)$ undergoes a thermodynamic process in which the temperature and pressure of the gas are related as $T^{-1} P^{2}=$ constant. The molar heat capacity of the gas during the process is
A. $\frac{3}{2} R$
B. $\frac{4}{3} R$
C. $\frac{5}{2} R$
D. $3 R$

Answer: C

- Watch Video Solution

9. One of the two identical conducting wires of
length L is bent in the form of a circular loop
and the other one into a circular coil of N identical turns. If the same current passed in both, the ratio of the magnetic field at the central of the loop $\left(B_{L}\right)$ to that at the central of the coil $\left(B_{C}\right)$, i.e. $\frac{B_{L}}{B_{C}}$ will be :
A. $\frac{1}{N^{2}}$
B. $\frac{1}{N}$
C. N
D. N^{2}

Answer: A

D Watch Video Solution

10. Half-life of radioactive sample, when activity
of material initially was 8 counts and after 3
hours it becomes 1 count is
A. 2 h
B. 1 h
C. 3 h
D. 4 h

Answer: B

D Watch Video Solution
11. The time period of a spring - mass system is
T. If this spring is cut into two parts, whose
lengths are in the ratio $1: 2$, and the same
mass is attached to the longer part, the new
time period will be

> А. $\sqrt{\frac{1}{3}} T$
> В. $\sqrt{\frac{2}{3}} T$
> С. $\frac{\sqrt{3} T}{2}$
D. $\sqrt{3} T$

Answer: B
(Watch Video Solution
12. Two soap bubble are combined isothermally to form a big bubble of radius R.

If ΔV is change in volume, ΔS is change in surface area and P_{0} is atmospheric pressure then show that $3 P_{0}(\Delta V)+4 T(\Delta S)=0$

$$
\text { A. } 4 p V+3 S A=0
$$

$$
\text { B. } 3 p V-4 S A=0
$$

C. $4 p V-3 S A=0$

$$
\text { D. } 3 p V+4 S A=0
$$

- Watch Video Solution

13. A cylindrical tube filled with water $\left(\mu_{w}=\frac{4}{3}\right)$ is closed at its both ends by two
thin, silvered plano - convex lenses, as shown
in the figure. Refractive index of lenses
L_{1} and L_{2} and 2.0 and 1.5 , while their radii of curvatures are 5 cm and 9 cm , respectively. A point O on the axis of the cylindrical tube. If it is found that all the images formed by multiple refractions and reflections coincide with the object, then the distance with the
object, then the distance between both the

lenses is

A. 8 cm

B. 18 cm

C. 10 cm

D. 14 cm

Answer: B

- Watch Video Solution

14. A transistor connected in common emitter configuration has input resistance
$R_{\text {in }}=2 K \Omega$ and load resistance of $5 K \Omega$. If
$\beta=60$ and an input signal 12 mV is applied,
calculate the resistance gain, voltage gain and
power gain.
A. 9000

B. 4000

C. 6000

D. 8000

Answer: A

D Watch Video Solution

15. A clock which keeps correct time at $20^{\circ} \mathrm{C}$ is
subjected to $40^{\circ} C$. If coefficient of linear expansion of the pendulum is
$12 \times 10^{-6} /{ }^{\circ} C$. How much will it gain or loss in time ?
A. 10.3 s day $^{-1}$
B. $20.6 \mathrm{~s} \mathrm{day}^{-1}$
C. $5 \mathrm{~s} \mathrm{day}^{-1}$
D. 20 min day $^{-1}$

Answer: A
(Watch Video Solution
16. The density of a cube is measured by measuring its mass and length of its sides. If the maximum error in the measurement of mass and length are 4% and 3% respectively,
the maximum error in the measurement of density will be
A. 1%
B. 7%
C. 5%
D. 13%

Answer: D

D Watch Video Solution

17. In a Young's double slit experiment, the slit separation is $1 m m$ and the screen is $1 m$ from
the slit. For a monochromatic light of wavelength 500 nm , the distance of 3 rd minima from the central maxima is
A. 0.50 mm
B. 1.25 mm

C. 1.50 mm

D. 1.75 mm

Answer: B

D Watch Video Solution

18. Two coherent sound sources A and B produce a sound of wavelength λ. If at $t=0$
a detector starts moving with constant
velocity v_{0} from point O along y - direction,
then the minimum time, after which it detects
the sound of maximum intensity, is $(D \gg \lambda)$

A. $\frac{\sqrt{7} D}{v_{0}}$
B. $\frac{D}{3 v_{0}}$
C. $\frac{D}{v_{0}}$
D. $\frac{\sqrt{7} D}{3 v_{0}}$

Answer: D

D Watch Video Solution

19. Two particles of same mass moving with
velocities u_{1} and u_{2} collide perfectly inelastically. The loss of energy would be :
A. $\frac{1}{2} M\left(v_{1}-v_{2}\right)$
B. $\frac{1}{2} M\left(v_{1}^{2}-v_{2}^{2}\right)$
C. $\frac{1}{4} M\left(v_{1}-v_{2}\right)^{2}$
D. $2 M\left(v_{1}^{2}-v_{2}^{2}\right)$

Answer: C

- Watch Video Solution

20. A car is travelling at a velocity $10 \mathrm{~km} \mathrm{~h}^{-1}$
on a straight road. The driver of the car throws a parcel with a velocity $10 \sqrt{2} k m h^{-1}$ with respect to the car, when the car is passing by a man standing on the side of the road. If the parcel is to reach the man, the direction of throw makes the following angle with the direction of motion of the car
A. 135°
B. 45°
C. $\tan ^{-1} \sqrt{2}$
D. $\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$

Answer: A

D Watch Video Solution

21. The potential different across the Coolidge
tube is $20 k V$ and 10 mA current flows
through the voltage supply. Only 0.5% of the energy carried by the electrons striking the largest is converted into X-ray. The power carried by the X -ray beam is p. Then

D Watch Video Solution

22. An athlete, initially at rest, takes 2 s to reach his maximum speed of $36 \mathrm{~km} \mathrm{~h}^{-1}$. The magnitude of his average accleration (in $m s^{-2}$) is

- Watch Video Solution

23. In the arrangement shown in the figure, friction exists only between the two blocks, A and B. The coefficient of static friction $\mu_{s}=0.6$ and coefficient of kinetic friction $\mu_{k}=0.4$, the masses of the blocks A and B are $m_{1}=20 \mathrm{~kg}$ and $m_{2}=30 \mathrm{~kg}$, respectively. Find the acceleration (in $m s^{-2}$) of m_{1}, if a force
$F=150 N$ is applied, as shown in the figure.
[Assume that string and pulleys are massless]

- Watch Video Solution

24. A metal surface having a work function
$\phi=2.2 \times 10^{-19} \mathrm{~J}$, is illuminated by the light
of wavelengh $1320 \AA$. What is the maximum
kinetic energy (in eV) of the emitted photoelectron ? [Take $h=6.6 \times 10^{-34} \mathrm{Js}$]

- Watch Video Solution

25. A uniform rod $A B$ of mass $m=2 k g$ and length $l=1.0 \mathrm{~m}$ is placed on a sharp support
P such that $a=0.4 m$ and $b=0.6 m$. A.
spring of force constant $k=600 \mathrm{~N} / \mathrm{m}$ is attached to end B as shown in Fig. To keep the rod horizontal, its end A is tied with a thread such that the spring is B elongated by $1 C M$. Calculate reaction of support P when
the thread is burnt.

- Watch Video Solution

