©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 37

Physics

1. A sphere is moving with velocity vector $2 \hat{i}+2 \hat{j}$ immediately before it hits a vertical wall. The wall is parallel to \hat{j} and the
coefficient of restitution of the sphere and the
wall is $e=\frac{1}{2}$. Find the velocity of the sphere after it hits the wall?

> A. $\hat{i}-\hat{j}$
> В. $-\hat{i}+2 \hat{j}$
> C. $-\hat{i}-\hat{j}$
> D. $2 \hat{i}-\hat{j}$

Answer: B

D Watch Video Solution
2. A resistor is constructed as hollow cylinder with inner and outer radii
$r_{a}=0.5 \mathrm{~cm}, r_{b}=1.0 \mathrm{~cm}$ respectively and resistivity $\rho=3.5 \times 10^{-5} \Omega$. The resistance of the configuration for the length of 5 cm cylinder is ___ $\times 10^{-3} \Omega$.
A. 7.42
B. 10.56
C. 14.38
D. 16.48

D Watch Video Solution

3. The magnetic flux through a stationary loop
with resistance R varies during interval of time

T as $\phi=$ at ($\mathrm{T}-\mathrm{t})$. The heat generated during
this time neglecting the inductance of loop
will be
A. $\frac{a T}{3 R}$
B. $\frac{a^{2} T^{2}}{3 R}$
C. $\frac{a^{2} T^{2}}{R}$
D. $\frac{a^{2} T^{3}}{3 R}$

Answer: D

D Watch Video Solution

4. Plates of a parallel plate capacitor, having a potential difference 100 V applied across them, carry a surface charge density of $50 \mathrm{nC} \mathrm{cm}^{-2}$. Spacing between the plates is
A. $329 \mu m$
B. $259 \mu \mathrm{~m}$
C. $177 \mu m$
D. $125 \mu \mathrm{~m}$

Answer: C

D Watch Video Solution

5. An artificial satellite is moving in a circular orbit around the earth with a speed equal to
half the escape velocity from the earth of
radius R. The height of the satellite above the surface of the earth is
A. R
B. 2 R
C. 3 R
D. 4 R

Answer: A
(Watch Video Solution
6. An ideal Carnot's engine works between
$227^{\circ} \mathrm{C}$ and $57^{\circ} \mathrm{C}$. The efficiency of the engine
will be
A. 22%
B. 34%
C. 55%
D. 13.5%

Answer: B

D Watch Video Solution

7. At the centre of a current - carrying circular

 coil of radius 5 cm , magnetic field due to earthis $0.5 \times 10^{-5} \mathrm{~Wb} \mathrm{~m}^{-2}$. The current flowing through the coil, so that it equals the Earth's magnetic field, is
A. 40 A
B. $4 A$
C. 0.4 A
D. 0.2 A

- Watch Video Solution

8. A gun of mass 10 kg fires 4 bullets per second. The mass of each bullet is 20 g and the velocity of the bullet when it leaves the gun is $300 \mathrm{~ms}^{-1}$. The force required to hold the gun while firing is
A. 6 N
B. 8 N
C. 24 N

D. 240 N

Answer: C

D Watch Video Solution

9. A particle performs SHM with an amplitude of 5 m . If at $\mathrm{x}=4 \mathrm{~m}$, the magnitude of velocity and accelertion are equal, then the time period of SHM (in seconds) is

$$
\text { A. } \frac{2 \pi}{3}
$$

B. $\frac{4 \pi}{3}$
C. $\frac{8 \pi}{3}$
D. $\frac{6 \pi}{3}$

Answer: C

D Watch Video Solution

10. In an electromagnetic wave, the maximum
value of the electric field is $100 \mathrm{Vm}^{-1}$ The average intensity is

$$
\left.\left[\varepsilon_{90}\right)=8.8 \times 10^{-12} c^{-2} N^{-1} m^{2}\right]
$$

A. $13.2 \mathrm{~W} \mathrm{~m}^{-2}$
B. $36.5 \mathrm{~W} \mathrm{~m}^{-2}$
C. $46.7 \mathrm{~W} \mathrm{~m}^{-2}$
D. $765 \mathrm{~W} \mathrm{~m}^{-2}$

Answer: A

D Watch Video Solution

11. A point object is moving with a speed v before an arrangement of two mirrors as shown in
figure. Find the magnitude of velocity of image in
mirror M_{1} with respect to image in mirror M_{2}

A. $2 v \sin \theta$
B. $v \sin \theta$
C. $3 v \sin \theta$
D. $4 v \sin \theta$

Answer: A

D Watch Video Solution

12. A playground merry-go-round is at rest, pivoted about a frictionless axis. A child of mass m runs along a path tangential to the rim with speed v and jumps on to the merry-go-round. If R is the radius of the merry-goround and I is its moment of inertia, then the angular velocity of the merry-go-round is

> A. $\frac{m v R}{m R^{2}+I}$
> B. $\frac{m v R}{I}$
> C. $\frac{m R^{2}+I}{m v R}$
> D. $\frac{I}{m v R}$

Answer: A

- Watch Video Solution

13. Amplitude modulation is the process of
A. superimposing a high frequency signal on a high frequency carrier signal
B. superimposing a low frequency signal on
a high frequency carrier signal
C. single sideband communication
D. amplitude shift and phase shift

Answer: B

- Watch Video Solution

14. If the temperature is raised by 1 K from 300 K , the percentage change in the speed of sound in the gaseous mixture is $\left[R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}\right]$
A. 0.167%
B. 0.334%
C. 1%
D. 2%

Answer: A
15. In a reverse biased diode, when the applied
voltage changes by $1 V$, the current is found to change by $0.5 \mu A$. The reversebiase resistance of the diode is
A. $2 \times 10^{5} \Omega$
B. $2 \times 10^{6} \Omega$
C. 200Ω
D. 2Ω

Answer: B

- Watch Video Solution

16. A rod of mass ' M ' and length ' $2 L$ ' is suspended at its middle by a wire. It exhibits torsional oscillations, if two masses each of ' m ' are attached at distance' $L / 2$ ' from its centre on both sides, it reduces the oscillation frequency by 20%. The value of ratio m / M is close to :
A. 0.17
B. 0.77
C. 0.57
D. 0.37

Answer: D

D Watch Video Solution

17. Two full turns of the circular scale of a screw gauge cover a distance of 1 mm on its main scale. The total number of divisions on
the circular scale is 50 . Further, it is found that
the screw gauge has a zero error of -0.03 mm
. While main scale reading of $3 m m$ and the number of circular scale divisions in line with the main scale as 35 . the dimeter of the wire is
A. 3.38 mm
B. 3.32 mm
C. 3.73 mm
D. 3.67 mm

Answer: A
18. An infinte wire place along z-axis has current I_{1} in positive z-direction A conducting rod placed in $x y$ plane parallel to y-axis has current I_{2} in positive y-direction The ends of the rod subtend $+30^{\circ}$ and -60° at the origin with positive x direction The rod is at a distance a from the origin. Find net force on the rod.

$$
\text { A. } F=\frac{\mu_{0}}{4 \pi} l_{1} l_{2} \ln 3(-\hat{k})
$$

B. $F=\frac{\mu_{0}}{4 \pi} 2 l_{1} l(2) \ln 3(-\hat{i})$
C. $F=\frac{\mu_{0}}{4 \pi} 2 l_{1} l_{2} \ln 3(\hat{k})$
D. $F=\frac{\mu_{0}}{4 \pi} 2 l_{1} l_{2} \ln 3(\hat{k})$

Answer: A

D Watch Video Solution

19. The graph shows how the magnification m produced by a thin lens varies with image distance v. What is the focal length of the lens
used?

A. $\frac{b}{c}$
B. $\frac{a}{c}$
C. $\frac{b^{2} c}{a}$
D. $\frac{b^{2}}{a c}$

Answer: A

D Watch Video Solution

20. Two points on a travelling wave having frequency 500 Hz and velocity $300 \mathrm{~ms}^{-1}$ are 60° out of phase, then the minimum distance between the two point is
A. 0.2
B. 0.1
C. 0.5

D. 0.4

Answer: B

D Watch Video Solution

21. Length of the horizontal arm of a uniform
cross - section U - tube is $I=5 \mathrm{~cm}$ and both
ends of the vertical arms are open to the surrounding pressure of $7700 \mathrm{~N} \mathrm{~m}^{-2}$. A liquid of density $\rho=10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ is poured into the tube such that the liquid just fills the
horizontal part of the tube. Now, one of the open ends is sealed and the tube. Now, one of the open ends is sealed and the tube is then rotaed about a vertical axis passing through the other veritcal arm with angular velocity ω due to which the liquid rises up to half the length of the vertical arm. If length of each vertical arm is $a=6 \mathrm{~cm}$. What is the value of
$\omega\left(\operatorname{in~rad~s}^{-1}\right) ?$

D Watch Video Solution
22. A wire suspended vertically from one of the
its ends is stretched by attaching a weight of

200 N to the lower end. The weight stretches
the wire by 1 mm . then the elastic energy stored in the wire is

D Watch Video Solution

23. The moment of inertia of a hollow cubical
box of mass M and side a about an axis
passing through the centres of two opposite faces is equal to.
24. A horizontal platform with an object placed on it is executing SHM in the vertical direction
. The amplitude of oscillation is 2.5 cm what must be the least period of these oscillations so that the object is not detached?

- Watch Video Solution

$$
\begin{aligned}
& \text { 25. In a Wheatstone's network, } \\
& P=2 \Omega, Q=2 \Omega, R=2 \Omega \text { and } S=3 \Omega \text {. The }
\end{aligned}
$$

resistance with which S is to be shunted in order that the bridge may be balanced is

Watch Video Solution

