©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 40

Physics

1. The energy required to remove the electron
from a singly ionized Helium atom is 2.2 times
the energy required to remove an electron
from Helium atom. The total energy required to ionize the Helium atom ompletelyis:
A. 34 ev
B. 20 eV
C. 79 eV
D. 109 eV

Answer: C
(Watch Video Solution
2. A ball of mass m_{1} is moving with velocity 3 v .

It collides head on elastically with a stationary
ball of mass m_{2}. The velocity of both the balls become v after collision. Then the value of the ratio $\frac{m_{2}}{m_{1}}$ is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

3. A galvanometer having full scale deflection current of 10 mA and resistance 8Ω is joined in circuit as shown. When the terminals A and B are used and C remains open, the range of the ammeter is I . When the terminals A and C are used and B remains open, then the range of the ammeter is
A. I
B. $\frac{I}{2}$
C. $\frac{I}{3}$
D. $\frac{2 I}{3}$

Answer: B

- Watch Video Solution

4. Why are alloys used for making standard resistance coils?
A. They have high thermal conductivity.
B. Their resistance depend weakly on
temperature.
C. They have low thermal conductivity.
D. Their resistance depend strongly on
temperature.

Answer: B

- Watch Video Solution

5. The figure shows a long coaxial cable in which a current I flows down through the inner cylinder of radius a and the same current flows back up through the outer cylinder of radius 2 a . The cylinders are insulated from each other and the current is uniformly distributed over the area of the cross-section in each cylinder. The strength of the magnetic field at a distance $3 a / 2$ from the
axis of the cable is

A. $B=\frac{5 \mu_{0} I}{36 \pi a}$
B. $B=\frac{5 \mu_{0} I}{12 \pi a}$
C. $B=\frac{7 \mu_{0} I}{12 \pi a}$
D. $B=\frac{7 \mu_{0} I}{36 \pi a}$

Answer: D
6. A dipole of dipole moment $\vec{p}=p \hat{i}$ lies
along the x -axis in a non-uniform electric field
$\vec{E}=\frac{c}{x} \hat{i}$. The force acting on the dipole is
A. zero

$$
\text { B. }-\frac{p c}{x^{2}} \hat{i}
$$

C. $\frac{p c}{x^{2}} \hat{i}$

$$
\text { D. }-\frac{p c}{2 x^{2}} \hat{i}
$$

Answer: B
7. A hypothetical planet in the shape of a sphere is completely made of an incompressible fluid and has a mass M and radius R. If the pressure at the surface of the planet is zero, then the pressure at the centre of the planet is $[G=$ universal constant of gravitation]

$$
\begin{aligned}
& \text { A. } P=\frac{3 G M^{2}}{8 \pi R^{4}} \\
& \text { B. } P=\frac{3 G M^{2}}{4 \pi R^{4}}
\end{aligned}
$$

C. $P=\frac{3 G M^{2}}{8 \pi^{2} R^{4}}$
D. $P=\frac{3 G M^{2}}{4 \pi^{2} R^{4}}$

Answer: A

- Watch Video Solution

8. The power radiated by a black body is P, and
it radiates maximum energy around the
wavelength λ_{0}. If the temperature of the black body is now changed so that it radiates maximum energy around a wavelength $3 \lambda_{0} / 4$,
the power radiated by it will increase by a
factor of

$$
\begin{aligned}
& \text { A. } \frac{4}{3} P_{0} \\
& \text { B. } \frac{16}{9} P_{0} \\
& \text { C. } \frac{64}{27} P_{0} \\
& \text { D. } \frac{256}{81} P_{0}
\end{aligned}
$$

Answer: D

D Watch Video Solution

9. The temperature of 5 moles of a gas at constant volume is changed from $100^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$. The change in internal energy is 80 J.

The total heat capacity of the gas at constant volume will be in $\frac{J}{K}$.
A. 8
B. 4
C. 0.8
D. 0.4

Answer: B

- Watch Video Solution

10. A car is moving along the circle
$x^{2}+y^{2}=a^{2}$ in the anti-clockwise direction with a constant speed. The $x-y$ plane is a rough horizontal stationary surface. When the car is at the point $(a \cos \theta, a \sin \theta)$, the unit vector in the direction of the friction force acting on the car is
A. $\cos \theta \hat{i}+\sin \theta \hat{i}$
B. $\cos \theta \hat{i}+\sin \theta \hat{i}$
C. $-\cos \theta \hat{i}-\sin \theta \hat{j}$
D. $-\cos \theta \hat{i}+\sin \theta \hat{j}$

Answer: C

D Watch Video Solution

11. Nucleus A decays into B with a decay constant λ_{1} and B further decays into C with a decay constant λ_{2}. Initially, at $t=0$, the number of nuclei of A and B were $3 N_{0}$ and N_{0}
respectively. If at $\mathrm{t}=t_{0}$ number of nuclei of B becomes constant and equal to $2 N_{0}$, then

$$
\begin{aligned}
& \text { A. } t_{0}=\frac{1}{\lambda_{1}} \ln \left[\frac{3 \lambda_{1}}{2 \lambda_{2}}\right] \\
& \text { B. } t_{0}=\frac{1}{\lambda_{1}} \operatorname{lm}\left[\frac{\lambda_{1}}{\lambda_{2}}\right] \\
& \text { C. } t_{0}=\frac{1}{\lambda_{1}} \ln \left[\frac{2 \lambda_{1}}{3 \lambda_{2}}\right] \\
& \text { D. } t_{0}=\frac{1}{\lambda_{2}} \ln \left[\frac{3 \lambda_{1}}{2 \lambda_{2}}\right]
\end{aligned}
$$

Answer: A

D Watch Video Solution

12. An electron of mass m and charge e initially at rest gets accelerated by a constant electric field E. The rate of change of deBroglie wavelength of this electron at time t ignoring relativistic effects is

$$
\begin{aligned}
& \text { A. } \frac{d \lambda}{d t}=-\frac{h}{e E t} \\
& \text { B. } \frac{d \lambda}{d t}=-\frac{2 h}{e E t} \\
& \text { C. } \frac{d \lambda}{d t}=-\frac{2 h}{e E t^{2}} \\
& \text { D. } \frac{d \lambda}{d t}=-\frac{h}{e E t^{2}}
\end{aligned}
$$

- Watch Video Solution

13. A tightly wound solenoid of radius 'a' and length 'I' has n turns per unit length. It carries an electric current i. Magnetic field at a distance $\frac{l}{4}$ from one of the end (inside the

$$
\mu_{0} n i(\sqrt{5}+3)
$$

solenoid on its axis) is $B=$
\sqrt{K}
for $l=4 a$. Then find the value of K.

A. $T=2 \pi \sqrt{\frac{2 L}{3 g}\left(\frac{d_{1}}{d_{2}-d_{1}}\right)}$
B. $T=2 \pi \sqrt{\frac{L}{3 g}\left(\frac{d}{d_{2}-d_{1}}\right)}$
C. $T=2 \pi \sqrt{\frac{2 L}{g}\left(\frac{d_{1}}{d_{2}-d_{1}}\right)}$
D. $T=2 \pi \sqrt{\frac{2 L}{3 g}\left(\frac{d_{2}-d_{1}}{d_{1}}\right)}$

Answer: A

D Watch Video Solution

14. Two uniform discs A and B of equal radii
but having different masses 1 kg and 2 kg
respectively, are connected (at centres) by a massless spring of spring constant $k=1000 \mathrm{Nm}^{-1}$ and then placed on a sufficiently rough horizontal surface. If initially,
the system is released from rest with the spring being compressed by 10 cm , then the speed of A when the spring comes back to its natural length, is

$$
\begin{aligned}
& \text { A. } v_{A}=\sqrt{\frac{40}{9}} m s^{-1} \\
& \text { B. } v_{A}=\sqrt{\frac{20}{9}} m s^{-1} \\
& \text { C. } v_{A}=\sqrt{\frac{20}{3}} m s^{-1} \\
& \text { D. } v_{A}=\sqrt{\frac{40}{3}} m s^{-1}
\end{aligned}
$$

Answer: A

D Watch Video Solution

15. A common emitter amplifier has a voltage gain of 50 , an input impedance of 100Ω and an
output impedance of 200Ω. The power gain of the amplifier is :-
A. 500
B. 1000
C. 1250
D. 100

Answer: C

D Watch Video Solution
16. Two bodies of equal masses are heated at a uniform rate under identical conditions. The change in temperature in the two cases is shown graphically. The ratio of their specific heats in the solid state is

A. $1: 3$
B. 1:2
C. 2:1
D. 1:4

Answer: A

- Watch Video Solution

17. If force F is related with distance x and time
t as $F=A \sqrt{x}+B t^{2}$, the dimensions of $\frac{A}{B}$ is

$$
\text { A. } M^{0} L^{-1 / 2} T
$$

B. $M L^{-1 / 2} T^{-2}$
C. $M^{0} L^{-1 / 2} T^{2}$
D. $M^{0} L T^{-2}$

Answer: C

D Watch Video Solution

18. A screw gauge with a pitch of 0.5 mm and a circular scale with 50 divisions is used to measure the thicknes of a thin sheet of

Aluminium. Before starting the measurement,
it is found that wen the jaws of the screw gauge are brought in cintact, the $45^{t h}$ division coincide with the main scale line and the zero of the main scale is barely visible. what is the thickness of the sheet if the main scale readind is 0.5 mm and the 25 th division coincide with the main scale line?

$$
\begin{aligned}
& \text { A. } \Delta f=f\left[\frac{c(c-v)}{v(c+v)}\right] \\
& \text { B. } \Delta f=f\left[\frac{v(c-v)}{c(c+v)}\right] \\
& \text { C. } \Delta f=f\left[\frac{c(c+v)}{v(c-v)}\right] \\
& \text { D. } \Delta f=f\left[\frac{v(c+v)}{c(c-v)}\right]
\end{aligned}
$$

Answer: D

D Watch Video Solution

19. A block of mass M slides on a frictionless
surface with an initial speed of v_{0} On top of block is a small box of mass m. the coefficients of friction between box and block are μ_{6} and μ_{k}. The sliding block encounters and ideal spring with force constant K. Answer following questions. What is maximum value of k for which it remains true that box does
not slide?

A. $\left(\frac{\mu g}{v_{0}}\right)^{2} \frac{(m+M)^{2}}{m}$
B. $\left(\frac{\mu g}{v_{0}}\right)^{2}(m+M)$
C. $\left(\frac{\mu g}{v_{0}}\right)^{2} \frac{(m+M)^{2}}{M}$
D. $\left(\frac{\mu g}{v_{0}}\right)^{0}(M-m)$

Answer: B
20. An inclined plane is located at angle $\alpha=53^{\circ}$ to the horizontal. There is a hole at point B in the inclined plane as shown in the figure. A particle is projected along the plane with speed v_{0} at an angle $\beta=37^{\circ}$ to the horizontal in such a way so that it gets into the hole. Neglect any type of friction. Find the
speed $v_{0}\left(\right.$ in $\left.m s^{-1}\right)$ if $\mathrm{h}=1 \mathrm{~m}$ and $\mathrm{I}=8 \mathrm{~m}$.

A. 9
B. 3
C. 6
D. 12

- Watch Video Solution

21. A tightly wound solenoid of radius 'a' and length 'l' has n turns per unit length. It carries an electric current i. Magnetic field at a distance $\frac{l}{4}$ from one of the end (inside the solenoid on its axis) is $B=\frac{\mu_{0} n i(\sqrt{5}+3)}{\sqrt{K}}$ solenoid on its axis) is $B=$ \sqrt{K} for $l=4 a$. Then find the value of K.

- Watch Video Solution

22. A screw gauge with a pitch of 0.5 mm and a circular scale with 50 divisions is used to measure the thicknes of a thin sheet of

Aluminium. Before starting the measurement,
it is found that wen the jaws of the screw gauge are brought in cintact, the $45^{\text {th }}$ division coincide with the main scale line and the zero of the main scale is barely visible. what is the thickness of the sheet if the main scale
readind is 0.5 mm and the $25 t h$ division

coincide with the main scale line?

D Watch Video Solution

23. A uniform solid cylinder can roll without sliding on a horizontal surface as shown in the
figure. The mass of cylinder is 10 kg and the spring constant for both the ideal springs is $300 \mathrm{Nm}^{-1}$. What is the angular frequency (in rad s^{-1}) of small oscillations of the centre of
the cylinder?

- Watch Video Solution

24. A point object is placed as shown. The two pieces are of the same lens of focal length 10 cm . Find the distance (in cm) between the two
images formed by two pieces of the lens.

D Watch Video Solution

25. Consider the interference at P between
waves emitting from three coherent sources in
the same phase located at S_{1}, S_{2} and S_{3}. If the intensity due to each source is
$I_{0}=12 W m^{-2}$ at P and $\frac{d^{2}}{2 D}=\frac{\lambda}{3}$ then what will be the resultant intensity $\left(\in W m^{-2}\right)$ at P?

