©゙" doubtnut

CHEMISTRY

BOOKS - NCERT CHEMISTRY (ENGLISH)

COORDINATION COMPOUNDS

Mcqs

1. Which of the following complexes formed by Cu^{2+} ions is most stable?
A. $\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}, \log \mathrm{K}=11.6$
B. $C u^{2+}+4 C N^{-} \rightarrow\left[C u(C N)_{4}\right]^{2-}, \log K=27.3$
C. $\mathrm{Cu}^{2+}+2 e n^{-} \rightarrow\left[\mathrm{Cu}(e n)_{2}\right]^{2+}, \log K=15.4$
D. $\mathrm{Cu}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}, \log \mathrm{K}=8.9$

- Watch Video Solution

2. The colour of the coordination compounds depends on the crystal field splitting . What will be the correct order of absorption of wavelength of light in the visible region, for the complexes, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$?
A. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
D. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: C

- Watch Video Solution

3. When $0.1 \mathrm{~mol} \mathrm{CoCl} l_{3}\left(\mathrm{NH}_{3}\right)_{5}$ is treated with excess of $\mathrm{AgNO}_{3}, 0.2$ mole of AgCl are obtained. The conductivity of solution will correspond to
A. $1: 3$ electrolyte
B. 1: 2 electrolyte
C. 1: 1 electrolyte
D. 3: 1 electrolyte

Answer: B

- Watch Video Solution

4. When $1 \mathrm{~mol} \mathrm{CrCl} 3 \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is treated with excess of $\mathrm{AgNO}_{3}, 3 \mathrm{~mol}$ of AgCl are obtained. The formula of the coplex is
A. $\left[\mathrm{CrCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{CrCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

Answer: D

- Watch Video Solution

5. The correct IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is
A. Diamminedichloridoplatinum (II)
B. Diamminedichloridoplatinum (IV)
C. Diamminedichloridoplatinum (0)
D. Dichloridodiammineplatinum (IV)

Answer: A

- Watch Video Solution

6. The stabilization of coordination compound due to chelation is called the chelate effect. Which of the following is the most stable complex species?
A. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
B. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: C

- Watch Video Solution

7. Indicate the complex ion which shows geometrical isomerism.
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\operatorname{Co}(C N)_{5}(N C)\right]^{3-}$

Answer: A

- Watch Video Solution

8. The CFSE for octahedral $\left[\mathrm{CoCl}_{6}\right]^{4-}$ is $18,000 \mathrm{~cm}^{-1}$. The CFSE for tetrahedral $\left[\mathrm{CoCl}_{4}\right]^{2-}$ will be
A. $18,000 \mathrm{~cm}^{-1}$
B. $16,000 \mathrm{~cm}^{-1}$
C. $8,000 \mathrm{~cm}^{-1}$
D. $20,000 \mathrm{~cm}^{-1}$

Answer: C
9. Due to the presence of ambidenate ligands coordination compounds show isomerism. Palladium complexes of the type $\left[P d\left(C_{6} H_{5}\right)_{2}(S C N)_{2}\right] \&\left[P d\left(C_{6} H_{5}\right)_{2}(N C S)_{2}\right]$ are
A. linkage isomers
B. Coordination isomers
C. ionisation isomers
D. geometrical isomers

Answer: A

- Watch Video Solution

10. The two compounds $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Br}$ and $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}$ represent:
A. linkage isomerism
B. ionisation isomerism
C. Coordination isomerism
D. no isomerism

Answer: D

- Watch Video Solution

11. Which of the following is not chelating agent
(a) Thiosulphate
(b) Oxalato
(c) Glycinato
(d) Ethylene diamine .
A. Thiosulphato
B. Oxalato
C. Glycinato
D. Ethane-1, 2-diamine

- Watch Video Solution

12. Which of the following species is not expected to be a ligand?
A. $N O$
B. NH_{4}^{+}
C. $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
D. $C O$

Answer: B

- Watch Video Solution

13. What kind of isomerism exists between $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ (violet) and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] . \mathrm{H}_{2} \mathrm{O}$ (greyish-green)?
A. Linkage isomersim
B. Solvate isomerism
C. Ionisation isomerism
D. Coordination isomerism

Answer: C

- Watch Video Solution

14. IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$ is
A. Platinum diaminechloronitrite
B. Chloronitrito- N -ammineplatinum (II)
C. Diamminechloridonitrito-N-platinum (II)
D. Diamminechloronitrito-N-platinate (II)

Answer: C

Mcqs More Than One Options

1. Atomic number of Mn . Fe and Co are 25,26 and 27 respectively. Which of the following inner orbital octahedral complex ions are diamagnetic ?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[M n(C N)_{6}\right]^{3-}$
C. $\left[F e(C N)_{6}\right]^{4-}$
D. $\left[F e(C N)_{6}\right]^{3-}$

Answer: A::C

- Watch Video Solution

2. Atomic number of $M n, F e, C o$ and $N i$ are $25,26,27$ and 28 respectively. Which of the following outer orbital octahedral complexes
have same number of unpaired electrons?
A. $\left[\mathrm{MnCl}_{6}\right]^{3-}$
B. $\left[F e F_{6}\right]^{3-}$
C. $\left[\mathrm{CoF}_{6}\right]^{3-}$
D. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Answer: A::C

- Watch Video Solution

3. Which of the following options are correct for $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ complex ?
A. $d^{2} s p^{3}$ hybridisation
B. $s p^{3} d^{2}$ hybridisation
C. Paramagnetic
D. Diamagnetic

- Watch Video Solution

4. An aqueous pink solution of cobalt (II) chloride changes to deep blue on addition of excess of HCl . This is because
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]^{2+}\right.$ is transformed into $\left[\mathrm{CoCl}_{6}\right]^{4-}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is transformed into $\left[\mathrm{CoCl}_{4}\right]^{2-}$
C. tetrahedral complexes have smaller crystal field splitting than
octahedral complexes
D. Tetrahedral complexes have larger crystal field splitting than octahedral complex

Answer: B::C

- Watch Video Solution

5. Which of the following complexes are homoleptic ?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
C. $\left[N i(C N)_{4}\right]^{2-}$
D. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$

Answer: A: C

- Watch Video Solution

6. Which of the following complexes are heteroleptic ?
A. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
C. $\left[M n(C N)_{6}\right]^{4-}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$

- Watch Video Solution

7. Identify the optically active compounds from the following
A. $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
B. trans $-\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
C. cis- $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
D. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]$

Answer: A: C

- Watch Video Solution

8. Identify the correct statements for the behaviour of ethane-1, 2diamine as a ligand.
A. It is a neutral ligand
B. It is a didentate ligand
C. It is a chelating ligand
D. It is a unidentate ligand

Answer: A::B::C

(Watch Video Solution

9. Which of the following complexes show linkage isomerism ?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]^{2+}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{CO}\right]^{3+}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}\right] S C N^{2+}$
D. $\left[F e(e n)_{2} C l_{2}\right]^{+}$

Answer: A:C

Short Answer Type

1. Arrange the following complexes in the increasing order of conductivity of their solution

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right],\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl} l_{2}\right] \mathrm{Cl},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3},\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}
$$

- Watch Video Solution

2. A coordination compound $\mathrm{CrCI}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ precipitates AgCI when treated with AgNO_{3} The molar conductance of its solution corresponds to a total of two ions Write the structural formula of the compound and name it .
3. A complex of the type $\left[M(A A)_{2} X_{2}\right]$ is known to the optically active. What does this indicate about the structure of the complex? Give one example of such complex.

- Watch Video Solution

4. Magnetic moment of $\left[\mathrm{MnCl}_{4}\right]^{2-}$ is 5.92 BM . Explain giving reason present.

- Watch Video Solution

5. On the basis of crystal field theory explain why Co(III) Forms paramagnetic octahedral complex with weak field ligands whereas it forms diamagnetic octahedral complex with strong field ligands.

- Watch Video Solution

6. Why are low spin tetrahedral complexes not formed?

- Watch Video Solution

7. Give the electronic configuration of the following complexes on the basis of crystal field splitting theory. $\left[\mathrm{CoF}_{6}\right]^{3-},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$.

- Watch Video Solution

8. Explain why $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ has magnetic moment value of 5.92 BM whereas $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ has a value of only 1.74 BM ?

- Watch Video Solution

9. Arrange following complex ions in increasing order of crystal field splitting energy $\left(\Delta_{0}\right)$.

- Watch Video Solution

10. Why do compounds having similar geometry have different magnetic moment?

- Watch Video Solution

11. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is blue in colour while CuSO_{4} is colourless. Why ?

- Watch Video Solution

12. Name the type of isomerism when ambidentate ligands are attched to central metal ion. Give two examples of ambidentate ligands.

- Watch Video Solution

1. Match the complex ions given in column I with the colours given in column II and assign the correct code.

	Column I $($ Complex ion)	Column II (Colour)	
A.	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$	1.	Violet
B.	$\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	2.	Green
C.	$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	3.	Pale blue
D.	$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{en})\right]^{2+}(\mathrm{aq})$	4.	Yellowish orange

A $A \quad B \quad C \quad D$
$\begin{array}{llll}1 & 2 & 4 & 5\end{array}$
в $A \quad B \quad C \quad D$
$\begin{array}{llll}4 & 3 & 2 & 1\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
C.
$\begin{array}{llll}3 & 2 & 4 & 1\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 4 & 3 & 2 & 1\end{array}$

Answer: A::B::C::D

2. Match the coordination compounds given in column I with the central metal atoms given in column II and assign the correct code.

Column I

(Coordination compound)
A. Chlorophyll
B. Blood pigment
C. Wilkinson catalyst
D. Vitamin B_{12}

Column II

(Central metal atom)

1. Shotum
2. Iron
A. $\begin{array}{llll}A & B & C & D\end{array}$
A.
$\begin{array}{llll}3 & 4 & 1 & 2\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
B.
$\begin{array}{llll}3 & 4 & 5 & 1\end{array}$
$A \quad B \quad C \quad D$
C.
$\begin{array}{llll}4 & 3 & 2 & 1\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 3 & 4 & 1 & 2\end{array}$

Answer: A::B::C::D

(D) Watch Video Solution

3. Match the complex ions given in column I with the hybridisation and number of unpaired electrons given in column II and assign the correct code

	Column I (Complex ion)	Column II (Hybridisation, number of unpaired electrons)
A.	$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	1.
$d s p^{2}, 1$		
B.	$\left[\mathrm{Co}(\mathrm{CN})_{4}\right]^{2-}$	2.
$s p^{3} d^{2}, 5$		
C.	$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	3.
$d^{2} s p^{3}, 3$		
D. $\left[\mathrm{MnF}_{6}\right]^{4-}$	4. $s p^{3} d^{2}, 2$	

$\begin{array}{llll}A & B & C & D\end{array}$

$\begin{array}{llll}3 & 1 & 4 & 2\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}4 & 3 & 2 & 1\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
C.
$\begin{array}{llll}3 & 2 & 4 & 1\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 4 & 1 & 2 & 3\end{array}$

Answer: A::B::C::D
4. Match the complex species given in column I with the possible isomerism given in Column II and assign the correct code.

Column I (Complex species)	Column II (Isomerism)
A. $\left.\quad \mathrm{CrO}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl},\right]^{1}$	1. Optical
B. Cis $-1 \mathrm{Co}(\mathrm{en}), \mathrm{Cl}, 1^{+}$	2. Ionisation
C. $\left.\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}_{2}$	3. Coordination
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$	4. Geometrical

A. (i) $(A, B, C, D):(1,2,4,3)$
B. (ii) $(A, B, C, D):(4,3,2,1)^{`}$
C. (iii) (A,B,C,D): (4,2,1,3)
D. (iv) $(A, B, C, D):(4,1,2,3)$

Answer: A::B::C::D

- Watch Video Solution

5. Match the compounds given In column I with oxidation state of cabalt present in it (given in column II) and assign the correct code.

Column I (Compound)	Column II (Oxidation state of Co)
	1. +4
Contis le.30.	2.0
C. $\mathrm{Na}_{4}\left[\mathrm{CO}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{3}\right]$	3. +2
D. $\left[\mathrm{CO}_{2}(\mathrm{CO})_{8}\right]$	4. +3

$\begin{array}{llll}A & B & C & D\end{array}$
A.
$\begin{array}{llll}1 & 2 & 4 & 3\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}4 & 3 & 2 & 1\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
C.
$\begin{array}{llll}3 & 1 & 4 & 2\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 4 & 1 & 3 & 2\end{array}$

Answer: D

1. Assertion (A) Toxic metal ions are removed by the chelating ligands. Reason (R) Chelate complexes tend to be more stable.
A. Assertion and reason both are true, reason is correct explanation of assertion.
B. Assertion and reason both are true but reason is not the correct explanation of assertion.
C. Assertion is true, reason is false.
D. Assertion is false, reason is true.

Answer: A

- Watch Video Solution

2. Assertion (A) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$ are reducing in nature.

Reason (R) Unpaired electrons are present in their d-orbitals.
A. Assertion and reason both are true, reason is correct explanation of assertion.
B. Assertion and reason both are true but reason is not the correct explanation of assertion.
C. Assertion is true, reason is false.
D. Assertion is false, reason is true.

Answer: B

- Watch Video Solution

3. Assertion (A) Linkage isomerism arises in coordination compounds containing ambidnetate ligand.

Reason (R) Ambidentate ligand has two different donor atoms.
A. Assertion and reason both are true, reason is correct explanation of assertion.
B. Assertion and reason both are true but reason is not the correct explanation of assertion.
C. Assertion is true, reason is false.
D. Assertion is false, reason is true.

Answer: A

- Watch Video Solution

4. Assertion (A) Complexes of $M X_{6}$ and $M X_{5} L$ type (X and L are unidentate) do not show geometrical isomerism.

Reason (R) Geometrical isomerism is not shown by complexes of coordination number 6.
A. Assertion and reason both are true, reason is correct explanation of assertion.
B. Assertion and reason both are true but reason is not the correct explanation of assertion.
C. Assertion is true, reason is false.
D. Assertion is false, reason is true.

Answer: B

- Watch Video Solution

5. Assertion (A) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ ion shows magnetic moment corresponding to two unpaired electrons.

Reason (R) Because it has $d^{2} s p^{3}$ type hybridisation.
A. Assertion and reason both are true, reason is correct explanation of assertion.
B. Assertion and reason both are true but reason is not the correct explanation of assertion.
C. Assertion is true, reason is false.
D. Assertion is false, reason is true.

Answer: D

- Watch Video Solution

Long Answer Type Question

1. Using crystal field theory, draw energy level diagram, write electronic configuration of the central metal atom/ion and determine the magnetic moment value in the following
(a) $\left[\mathrm{CoF}_{6}\right]^{3-},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
(b) $\mathrm{FeF}_{6}^{3-},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
2. Using valence bond theory, explain the following in relation to the complexes given below
$\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{FeCl}_{6}\right]^{4-}$
(a) type of hybridisation
(b) Inner or outer orbital complex
(c) Magnetic behaviour
(d) Spin only magnetic moment value.

- Watch Video Solution

3. $\mathrm{CoSO}_{4} \mathrm{Cl} .5 \mathrm{NH}_{3}$ exists in two isomeric forms 'A' and 'B'. Isomer 'A' reacts with AgNO_{3} to give white precipitate, but does not react with $B a C l 2$. Isomer ' B ' gives white precipitate with $B a C l_{2}$ but does not react with AgNO_{3}. Answer the following questions.
(a) Identify 'A' and ' B ' and write their structural formulae.
(b) Name the type of isomerism involved.
(c) Give the IUPAC name of ' A ' and ' B '.
4. what is the relationsphip between observed colour of the complex and the wavelength of light absorbed by the complex ?

- Watch Video Solution

5. Why are different colours observed in octahedral and tetrahedral complexes for the same metal and same ligands ?
