©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 47

Physics

1. A ball is dropped on a smooth inclined plane
and is observed to move horizontally after the
impact. The coefficient of restitution between
the plane and ball is e. The inclination of the plane is
A. 45°
B. $\tan ^{-1} e$
C. $\tan ^{-1} \sqrt{e}$
D. $\tan ^{-1}\left(\frac{e}{2}\right)$

Answer: C
(Watch Video Solution
2. A hollow vertical cylinder of radius R and
height h has a smooth internal surface. A
small particle is held in contact with the inner
side of upper rim at a point P. It is given a horizontal speed v_{0} tangential to rim. It leaves
the lower rim at point Q , vertically below P . The number of revolutions made by the particle
will be [Take acceleration due to gravity g]
A. $\frac{h}{2 \pi R}$
B. $\frac{v_{0}}{h} \sqrt{\frac{h}{2 g}}$
C. $\frac{v_{0}}{2 \pi R} \sqrt{\frac{2 h}{g}}$
D. $\frac{v_{0} \pi}{g} \sqrt{\frac{2 g h}{2 R}}$

Answer: C

D Watch Video Solution

3. The length of a magnet is large compared to its width and breadth. The time period of its oscillation in a vibration magnetometer is $2 s$.

The magnet is cut along its length into three equal parts and these parts are then placed
on each other with their like poles together .

The time period of this combination will be
A. 2 s
B. $\frac{2}{3} s$
C. $2 \sqrt{3} s$
D. $2 / \sqrt{3} s$

Answer: B
(Watch Video Solution
4. In the part of the circuit shown in the figure,
the potential difference between points
$V_{A}-V_{B}=16 V$. The current passing through
the 2Ω resistance will be

A. 2.5 A
B. 3.5 A
C. 4.0 A

D. zero

Answer: B

D Watch Video Solution

5. The power factor of an L-R series circuit is
0.5 and that of a C-R series circuit is 0.2 . If the elements (L, C and R) of the two circuit are joined in series and connected to the same ac source, the power factor of this circuit is
found to be 1 . The ratio of the resistance in
the $L-R$ circuit to the resistance in the C-R

circuit is

A. 2
B. $\sqrt{2}$
C. $2 \sqrt{2}$
D. 4

Answer: C
(Watch Video Solution
6. Two thin spherical shells made of metal are
at a large distance apart. One of radius 10 cm
carries a charge of $+0.5 \mu C$ and the other of radius 20 cm carries a charge of $+0.7 \mu C$. The charge on each, when they are connected by a suitable conducting wire is respectively
A. 0.4 and $0.8 \mu C$
B. +0.425 and $+0.85 \mu C$
C. +0.5 and $+0.7 \mu C$
D. +0.6 and $+0.6 \mu C$

Answer: A

D Watch Video Solution

7. A sphere of mass m and radius r is projected
in a gravity free space with speed v. If coefficient of viscosity of the medium in which
it moves is $\frac{1}{6 \pi}$, the distance travelled by the body before it stops is

$$
\begin{aligned}
& \text { A. } \frac{m v}{2 r} \\
& \text { B. } \frac{2 m v}{r}
\end{aligned}
$$

C. $\frac{m v}{r}$
D. $\frac{m v}{4 r}$

Answer: C

D Watch Video Solution

As shown in Fig. $A B$ is rod of length 30 cm and
area of cross section $1.0 \mathrm{~cm}^{2}$ and thermal conductivity 336 SI units. The ends A and B are maintained at temperatures $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$, respectively .A point C of this rod is connected to a box D , containing ice at $0^{\circ} \mathrm{C}$ through a highly conducting wire of negligible heat capacity. The rate at which ice melts in the box
is (assume latent heat of fusion for ice
$\left.L_{f}=80 \mathrm{cal} / g\right)$
A. $84 \mathrm{mg} \mathrm{s}^{-1}$
B. $84 \mathrm{~m} \mathrm{~s}^{-1}$
C. $20 \mathrm{mg} \mathrm{s}^{-1}$

D. $40 \mathrm{mg} \mathrm{s}^{-1}$

Answer: D

D Watch Video Solution

9. A Carnot's engine is made to work between
$200^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ first and then between $0^{\circ} \mathrm{C}$
and $-200^{\circ} C$. The ratio of efficiencies of the engine in the two cases is
A. $1: 2$
B. 1:1
C. 1.73:1
D. 1:1.73

Answer: D

- Watch Video Solution

10. A bucket full of water weighs 5 kg , it is
pulled from a well 20 m deep. There is a small
hole in the bucket through which water leaks
at a constant rate. If it is observed that for
every meter the bucket loses 0.2 kg mass of water, then the total work done in pulling the bucket up from the well is $\left[g=10 m s^{-2}\right]$
A. 600 J
B. 400 J
C. 100 J
D. 500 J

Answer: A

D Watch Video Solution
11. Consider the following diagram in which an inextensible string connects two blocks passing via ring. The first block moves with a velocity of $2 \mathrm{~ms}^{-1}$ and the second one moves with a velocity of $v m s^{-1}$. If the ring slides on horizontal rod then the value of v is
(in $m s^{-1}$)

A. $\frac{\sqrt{3}}{2}+1$
B. $\sqrt{\frac{3}{2}}+1$
C. $\sqrt{\frac{2}{3}+1}$
D. $\sqrt{\frac{2}{3}+1}$

Answer: B

D Watch Video Solution

12. The displacement of a particle varies with
time according to the relation
$y=a \sin \omega t+b \cos \omega t$.
A. The motion is oscillatory but not SHM
B. The motion is SHM with amplitude $a+b$
C. The motion is SHM with amplitude $a^{2}+b^{2}$
D. The motion is SHM with amplitude

$$
\sqrt{a^{2}+b^{2}}
$$

Answer: D

D Watch Video Solution

13. Mixed He^{+}and O^{2+} ions (mass of $\mathrm{He}^{+}=4$ amu and that of $O^{2+}=16 \mathrm{amu}$) beam passes
a region of constant perpendicular magnetic field. If kinetic energy of all the ions is same then
A. He^{+}ions will be deflected more than
those of O^{2+}
B. He^{+}ions will be deflected less than
that of O^{2+}
C. All the ions will be deflected equally

D. No ions will be deflected

Answer: C

- Watch Video Solution

14. The length of an elastic string is a metre when the longitudinal tension is 4 N and b metre when the longitudinal tension is 5 N .

The length of the string in metre when the longitudinal tension is 9 N is

$$
\text { A. } 4 a-5 b
$$

B. $5 \mathrm{~b}-4 \mathrm{a}$
C. 9b-9a
D. $a+b$

Answer: B

D Watch Video Solution
15. A thin convex lens L (refractive index $=1.5$)
is placed on a plane mirror M. When a pin is
placed at A, such that $O A=18 \mathrm{~cm}$, its real inverted image is formed at A itself, as shown
in figure. When liquid of refractive index is put between the lens and the mirror, the oin has to moved to A^{\prime}, such that $O A^{\prime}=27 \mathrm{~cm}$, to get its inverted real imaged at A^{\prime} itself. The value of μ_{l}
will be

A. $\frac{4}{3}$
B. $\sqrt{3}$
C. $\frac{3}{2}$
D. $\sqrt{2}$

Answer: A

D Watch Video Solution

16. A uniform smooth rod (mass m and length
l) placed on a smooth horizontal floor is hit by
a particle (mass m) moving on the floor, at a distance $\frac{l}{4}$ from one end elastically $(e=1)$.

The distance travelled by the centre of the rod after the collision when it has completed three revolutions will be
A. $2 \pi l$
B. $3 \pi l$
C. πl
D. $4 \pi l$

Answer: A

- Watch Video Solution

17. A beaker of height H is made up of a material whose coefficient of linear thermal expansion is 3α. It is filled up to the brim by a
liquid whose coefficient of volume expansion
is 3α. If now the beaker along with its contents is uniformly heated through a small
temperature T , the level of liquid will reduced by (Given, $\alpha T \ll 1$)
A. $\alpha T H$
B. $3 \alpha T H$
C. $9 \alpha T H$

D. $6 \alpha T H$

Answer: B

D Watch Video Solution

18. If the time period (T) of vibration of a
liquid drop depends on surface tension (S),
radius (r) of the drop, and density (ρ) of the
liquid, then find the expression of T.

$$
\text { A. } T=k \sqrt{\rho r^{3} / S}
$$

B. $T=k \sqrt{\rho^{1 / 2} r^{3} / S}$
С. $T=k \sqrt{\rho^{3} / S^{1 / 2}}$
D. None of these

Answer: A

D Watch Video Solution

19. A beam of light travelling in water strikes a glass plate, which is also immersed in water.

When the angle of incidence is 51°, the reflected beam is found to be plane polarised.

What is the refractive index of glass if the refractive index of water is $\frac{4}{3}$?
$\left[\tan 51^{\circ}=1.235\right]$
A. 1.605
B. 1.305
C. 1.33
D. 1.805

Answer: A

D Watch Video Solution
20. A metallic rod of length 1 m , young's modulus $3 \times 10^{11} \mathrm{Nm}^{-3}$ and density is
clamped at its middle. Longitudinal stationary
vibrations are produced in the rod with the total number of displacement nodes equal to
3. The frequency of vibrations is
A. $30,000 \mathrm{~Hz}$
B. $10,000 \mathrm{~Hz}$
C. 3000 Hz
D. 1500 Hz

Answer: A

- Watch Video Solution

21. The shortest wavelength of the Brackett series of a hydrogen-like atom (atomic number of $Z)$ is the same as the shortest wavelength of the Balmer series of hydrogen atom. The value of z is

- Watch Video Solution

22. IF B is the magnetic field at the centre of a circular loop of area A and its magnetic dipole moment is found to be $n \frac{B A^{m}}{\mu_{0} \sqrt{\pi}}$, then what is the value of $n+m$?

- Watch Video Solution

23. A small body is released from point A of
smooth parabolic path $y=x^{2}$, where y is vertical axis and x is horizontal axis at ground,
as shown. The body leaves the surface from
point B . If $g=10 \mathrm{~ms}^{-2}$ then what is the value of d (in m)?

D Watch Video Solution

24. If in a nuclear fission, piece of uranium of mass $0.5 g$ is lost, the energy obtained in $k W h$ is.

D Watch Video Solution
25. A bandwidth of 10 MHz is available for AM
transmission. If the maximum audio signal
frequency used for modulating the carrier is not to exceed 5 kHz , how many stations can be broadcasted within this band simultaneously without interfering with each other?

D Watch Video Solution

