©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 50

Physics

1. photoelectron are emitted when $4000 A^{0}$ radiation is incident on a surface of work
function 1.9 eV . these photoelectrons pass
through a region has α particles to form He^{+}
ion, emitting a single photon in this process
He^{+}ions thus formed are in their fourth excited state.

Energy released during during the combination of He^{+}ions is
A. 5.38 eV
B. 3.38 eV
C. 2.38 eV
D. 1.38 eV

- Watch Video Solution

2. The figure shows two blocks of mass meach, connected by an ideal unstretched spring and then placed on a frictionless floor. If the blocks are given velocities v_{0} and $2 v_{0}$ as shown, then the maximum extension in the spring is

A. $\sqrt{\frac{m v_{0}^{2}}{k}}$
B. $\sqrt{\frac{m v_{0}^{2}}{2 k}}$
C. $\sqrt{\frac{9 m v_{0}^{2}}{2 k}}$
D. None of these

Answer: C

D Watch Video Solution

3. An infinite thin non - conducting sheet has
uniform surface charge density σ. Find the potential difference $V_{A}-V_{B}$ between points
A and B as shown in the figure. The line $A B$ makes an angle of 37° with the normal to the
sheet. $\left(\sin 37^{\circ}=\frac{3}{5}\right)$
A. $\frac{2 \sigma d}{5 \varepsilon_{0}}$
B. $\frac{-2 \sigma d}{5 \varepsilon_{0}}$
C. $\frac{3}{10} \frac{\sigma d}{\varepsilon_{0}}$
D. $\frac{-3 \sigma d}{10 \varepsilon_{0}}$

Answer: A

- Watch Video Solution

4. Find the current I in the given circuit

A. $2 A$
B. 4.5 A
C. $6 A$
D. 1.5 A

Answer: B

D Watch Video Solution

5. The capacitor shown in the figure is initially unchanged, the battery is ideal. The switch S is closed at time $t=0$, then the time after which
the energy stored in the capacitor becomes
one - fourth of the energy stored in it in
steady - state is :

A. RC
B. $\mathrm{RC} \ln 2$
C. $R C \ln 4$

D. 2RC

Answer: B

D Watch Video Solution

6. A train moves towards a stationary observer
with speed $34 m / s$. The train sounds a whistle
and its frequency registered by the observer is
f_{1}. If the train's speed is reduced to $17 \mathrm{~m} / \mathrm{s}$,
the frequency registered is f_{2}. If the speed of sound of $340 \mathrm{~m} / \mathrm{s}$, then the ratio f_{1} / f_{2} is
A. $18 / 19$
B. $1 / 2$
C. 2
D. $19 / 18$

Answer: D

D Watch Video Solution

7. Physical quantity x and y are related as $y=4 \tan x$.If at $x=\frac{\pi}{4}$ radian error in
measurement of x is 2% then find $\%$ error in measurement of y at $x=\frac{\pi}{4}$
A. 2%
B. $\frac{\pi}{2} \%$
C. $\frac{\pi}{6} \%$
D. $\pi \%$

Answer: B
(Watch Video Solution
8. When gas is given heat ΔQ, a part of heat energy is utilized into work done W by gas and the remaining part is utilized to change in internal energy. An ideal diatomic gas is heated at constant pressure, the ratio of the internal energy change to heat energy supplied, is
A. $\frac{3}{7}$
B. $\frac{2}{5}$
C. $\frac{5}{7}$
D. $\frac{3}{5}$

Answer: C

D Watch Video Solution

9. A circular loop of radius R carrying current I
is kept in XZ plane. A uniform and constant magnetic field $\vec{B}=\left(B_{0} \hat{i}+2 B_{0} \hat{j}+3 B_{0} \hat{k}\right)$ exists in the region $\left(B_{0}-\right.$ a positive constant). Then the magnitude of the torque acting on the loop will be
A. $2 I \pi R^{2} B_{0}$
B. $\sqrt{5} I \pi R^{2} B_{0}$
C. $\sqrt{10} I \pi R^{2} B_{0}$
D. $6 I \pi R^{2} B_{0}$

Answer: C

D Watch Video Solution

10. A storage tower supplies water, as shown in the figure. If P_{0} is the atmospheric pressure $h=$ height of water level, $g=$ acceleration due
to gravity, $\rho=$ density and $\mathrm{v}=$ velocity of flow in the horizontal pipe at B, then the pressure at B is -

A. P_{0}
B. $P_{0}+\rho g h$

> C. $P_{0}+\rho g h+\frac{1}{2} \rho v^{2}$
> D. $P_{0}+\rho g h-\frac{1}{2} \rho v^{2}$

Answer: D

- Watch Video Solution

11. The electric field associated with a light
wave is given
$E=E_{0} \sin \left[\left(1.57 \times 10^{7} m^{-1}\right)(c t-x)\right]$. Find
the stopping potential when this light is used in an experiment on a photoelectric effect
with the emitter having work function 2.1 eV .

$$
h=6.62 \times 10^{-34} J s
$$

A. 0.6 eV
B. 1.2 eV
C. 1.8 eV
D. 2.4 eV

Answer: B

D Watch Video Solution
12. A block of mass m rests on top of a block of mass 2 m which Is kept on a table. The coefficient of kinetic friction between all surfaces is $\mu=1 A$ massless string is connected to each mass and wraps halfway around a massless pulley, as shown. Assume that you pull on the pulley with a force of 6 mg . What Is the acceleration of your hand ?

A. $\frac{g}{2}$
B. 2 g
C. $\frac{5 g}{4}$
D. $\frac{4 g}{5}$

Answer: C

- Watch Video Solution

The adjoining diagram shows three soap
bubbles, A , B and C prepared by blowing the capillary tube fitted with stop cocks S, S_{1}, S_{2} and S_{3} with stop cock S closed and stop cocks
S_{1}, S_{2} and S_{3} opened-
A. B will start collapsing with volumes of A
and C increasing
B. C will start collapsing with volumes of A
and B increasing
C. C and A both will start collapsing with
the volume of B increasing

D. Volume of A, B and C will become equal

to equilibrium

Answer: A

D Watch Video Solution

14. An ideal string is wrapped on a ring and the free end of the string is attached to the ceiling as shown in the figure. Initially, the system is held in equilibrium by an external agent and at some instant of time, the system
is released from rest. If there is no slipping between the string and the ring, then the tension in the string is

//////////I

m,R

\odot Ring

A. $m g$
B. $\frac{m g}{2}$
C. $\frac{m g}{3}$

D. 2 mg

Answer: B

D Watch Video Solution

15. A point object is moving with a speed v
before an arrangement of two mirrors as
shown in
figure. Find the magnitude of velocity of image
mirror M_{1} with respect to image in mirror M_{2}

A. $v_{0} \sqrt{3}$
B. $v_{0} \sqrt{6}$
C. $\frac{v_{0}}{\sqrt{3}}$
D. $\left(\frac{v_{0} \sqrt{3}}{2}+v_{0}\right)$

Answer: B

- Watch Video Solution

16. A light cylindrical tube ' T ' of length l and radius ' r ' containing air is inverted in water
(density d). One end of the tube is open and
the other is closed A block ' B ' of density 2 d is
kept on the tube as shown in the figure. The tube stays in equilibrium in the position
shown. (Assume the atmosphere pressure is to be P_{0})

Assume that density of air is very small than density of block and water. Pick up the correct
statement (s)

A. $v=\frac{d_{1}}{d_{2}-d_{1}} \frac{p r^{2} l}{3}$
B. $v=\frac{d_{2}}{d_{2}-d_{1}} \frac{p r^{2} l}{3}$
C. $v=\frac{d_{1}}{d_{1}-d_{2}} \frac{p r^{2} l}{3}$
D. $\frac{d_{1}}{d_{2}} \frac{p r^{2} l}{3}$
17. The velocity of a particle measured from an instrument is $0.00204300 \mathrm{~m} / \mathrm{s}$. The number of significant figures is
A. 8
B. 4
C. 6
D. 3

- Watch Video Solution

18. White light is used to illuminate the two
slits in Young's double slit experiment. The separation between the slits is b and the screen is at a distance $D \gg b$ from slits. At a point on the screen directly in front of one of the slits, the missing wavelengths are
A. $\frac{2 x^{2}}{z}$
B. $\frac{3 x^{2}}{z}$
C. $\frac{x^{2}}{5 z}$
D. $\frac{x^{2}}{2 z}$

Answer: C

D Watch Video Solution

19. The block of mass $m_{0}=\mu L$ is attached to
a uniform string of mass $M=\mu L$ and length
L as shown in the figure. If a wave pulse is produced near the block, then the time it
taken to reach the ceiling is

mo

A. $(\sqrt{2}-1) \sqrt{\frac{L}{g}}$
B. $2(\sqrt{2}+1) \sqrt{\frac{L}{g}}$
C. $2(\sqrt{2}-1) \sqrt{\frac{L}{g}}$
D. $(\sqrt{2}+1) \sqrt{\frac{L}{g}}$.

Answer: C

D Watch Video Solution

20. Two particles of masses m and $2 m$ are attached to the massless rod of length 21 as shown in figure. The rod is hinged at its midpoint O and is free to rotate in vertical plane about hinge. The minimum speed v at the given instant so that it can complete the
circle.

A. $\sqrt{g l}$

> B. $\sqrt{4 g l}$
> C. $\sqrt{5 g l}$
> D. $\sqrt{\frac{4 g l}{3}}$

Answer: D

D Watch Video Solution

21. Corresponding to the process shown in
figure, the heat given to the gas in the process

ABCA is $(0.2 x) J$. Find value of x.

- Watch Video Solution

22. Two large plane mirrors PM and PN are arrange as shown. The length of the part of
large screen SS' in which two image of the object placed at P can be seen is x (in m). Find
the value $\sqrt{3} x$.

D Watch Video Solution

23. Initially, both the blocks are at rest on horizontal surface as shown in the figure. Find
the minimum value of force F in (N) so that

sliding starts between the blocks

$\left(g=10 m s^{-2}\right)$

D Watch Video Solution

24. In the given cirucit diagram the current through the 1Ω resistor is I . Find the value of

21 (in A)?

D Watch Video Solution

25. The equation of a stationary wave in a metal rod is given by
$y=0.92 \sin . \frac{\pi x}{3} \sin 1000 t$, where x is in cm
and t is in second. The maximum tensile stress
at a point $\mathrm{x}=1 \mathrm{~cm}$ is $\frac{n \pi}{3} \times 10^{8}$ dyne cm^{-2}. What is the value of n ? [Young's modulus of the material of rod is $=8 \times 10^{11}$ dyne cm^{-2}]

- Watch Video Solution

