©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 51

Physics

1. A sample consisting of Hydrogen atoms in
the ground state is excited by monochromatic
radiation of energy 12.75 eV . If we were to
observe the emission spectrum of this sample,
then the number of spectral lines observed, will be
A. 3
B. 6
C. 10
D. 15

Answer: B

D Watch Video Solution
2. A ball is thrown horizontally from a height h above a staircase as shown in the figure. If the coefficient of restitution for any collision between the ball and the staircase is e, then the value of h for which the ball will bounce the same height above each step, is

A. $\frac{d}{1-e^{2}}$
B. $\frac{d}{1+e^{2}}$
C. $\frac{d e^{2}}{1+e^{2}}$
D. $\frac{d e^{2}}{1-e^{2}}$

Answer: A

D Watch Video Solution

3. A block of mass m is projected on a smooth
horizontal circular track with velocity v what is
the average normal force exerted by the
circular walls on the block during motion A to

B?

A. $\frac{m v^{2}}{R}$
B. $\frac{m v^{2}}{\pi R}$
C. $\frac{2 m v^{2}}{R}$
D. $\frac{2 m v^{2}}{\pi R}$

Answer: D

- Watch Video Solution

4. A fully charged capacitor C with initial charge q_{0} is connected to a coil of self inductance L at $t=0$. The time at which the energy is stored equally between the electric and the magnetic fields is

$$
\text { A. } \frac{\pi}{4} \sqrt{L C}
$$

B. $\frac{2 \pi}{4} \sqrt{L C}$
C. $\sqrt{L C}$
D. $\pi \sqrt{L C}$

Answer: A

D Watch Video Solution

5. If the resistance of each branch of the circuit shown below is 1Ω, then the equivalent resistance of the circuit between the points A
and B is

A. $\frac{16}{24} \Omega$
B. $\frac{22}{35} \Omega$
C. $\frac{12}{30} \Omega$
D. $\frac{30}{12} \Omega$

Answer: B

D Watch Video Solution

6. An electric motor runs a D. C. source of e.m.f. 200 V and draws a current of 10 A . If the efficiency is 40%, then resistance of the armature is:
A. 5Ω
B. 12Ω
C. 30Ω
D. 25Ω

Answer: B

D Watch Video Solution

7. If 20 J of work has to be done to move an electric charge of $4 C$ from a point, where
potential is 10 V to another point, where potential is V volt, find the value of v .
A. 20 V
B. 30 V
C. 5 V
D. 15 V

Answer: D
(Watch Video Solution
8. In an experiment, a boy plots a graph between $\left(v_{\max }\right)^{2}$ and $\left(a_{\max }\right)^{2}$ for a simple pendulum for different values of (small) amplitudes, where $v_{\text {max }}$ and $a_{\text {max }}$ is the maximum velocity and the maximum
acceleration respectively. He found the graph
to be a straight line with a negative slope,
making an angle of 30° when the experiment
was conducted on the earth surface. When the
same experiment was conducted at a height h
above the surface, the line was at an angle of
60°. The value of h is [radius of the earth $=R$]
A. 0.5 R
B. 0.24 R
C. 0.73 R
D. R

Answer: C

D Watch Video Solution
9. 60 g of ice at $0^{\circ} \mathrm{C}$ is added to 200 g of
water initially at $70^{\circ} \mathrm{C}$ in a calorimeter of
unknown water equivalent W. If the final
temperature of the mixture is $40^{\circ} \mathrm{C}$, then the
value of W is [Take latent heat of fusion of ice
$L_{f}=80 \mathrm{calg}^{-1}$ and specific heat capacity of water $s=1 \mathrm{calg}^{-1} .{ }^{\circ} C^{-1}$]
A. 70 g
B. 80 g
C. 40 g
D. 20 g

Answer: C

10. Air is filled at $60^{\circ} C$ in a vessel of open mouth. The vessel is heated to a temperature
T so that $1 / 4 t h$ of air escapes. Assuming the volume of vessel remaining constant, the value of T is
A. $80^{\circ} C$
B. $444^{\circ} C$
C. $333^{\circ} C$
D. $171^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

11. The capacity of a vessel is $3 L$. It contains $6 g$
oxygen, $8 g$ nitrogen and $5 g C O_{2}$ mixture at $27^{\circ} \mathrm{C}$, If $R=8.31 \mathrm{~J} / \mathrm{molK}$, then the pressure in the vessel in N / m^{2} will be (approx.)
A. 5×10^{5}
B. 5×10^{4}
C. 1×10^{6}

D. 1×10^{5}

Answer: B

D Watch Video Solution

12. A bullet emerges from a barrel of length
$1.2 m$ with a speed of $640 m s^{1}$. Assuming
constant acceleration, after the gun is fired is
A. 4 ms
B. 40 ms

C. $400 \mu s$

D. 1 s

Answer: A

D Watch Video Solution

13. When forces F_{1}, F_{2}, F_{3} are acting on a particle of mass m such that F_{2} and F_{3} are mutually perpendicular, then the particle remains stationary. If the force F_{1} is now
removed then the acceleration of the particle is

$$
\begin{aligned}
& \text { A. } \frac{F_{1}}{m} \\
& \text { B. } \frac{F_{2} F_{3}}{m F_{1}} \\
& \text { C. } \frac{\left(F_{2}-F_{3}\right)}{m} \\
& \text { D. } \frac{F_{2}}{m}
\end{aligned}
$$

Answer: A
(Watch Video Solution
14. A candle flame 0.5 cm high is kept between
a wall and a concave mirror of focal length 1.5
m such that its image 1.5 cm high is formed on
the wall. Find the distance of candle from the
wall and also the distance between the wall
and the mirror.
A. $4 \mathrm{~m}, 6 \mathrm{~m}$
B. $6 \mathrm{~m}, 7 \mathrm{~m}$
C. $6 \mathrm{~m}, 8 \mathrm{~m}$
D. $9 \mathrm{~m}, 7 \mathrm{~m}$

Answer: A

D Watch Video Solution

15. A particle executes simple harmonic motion
with a period of $16 s$. At time $t=2 s$, the particle crosses the mean position while at $t=4 s$, its velocity is $4 m s^{-1}$ amplitude of motion in metre is
A. $\sqrt{2 \pi}$
B. $16 \sqrt{2 \pi}$
C. $24 \sqrt{2 \pi}$
D. $\frac{32 \sqrt{2 \pi}}{\pi}$

Answer: D

D Watch Video Solution

16. Two spherical soap bubbles of radii a and b
in vacuum coalesce under isothermal
conditions. The resulting bubble has a radius given by
A. $\frac{(a+b)}{2}$
B. $\frac{a b}{a+b}$
C. $\frac{a b}{a+b}$
D. $a+b$

Answer: C

D Watch Video Solution

17. Two uniform rods of equal length but different masses are rigidly joined to form an

L-shaped body, which is then pivoted as
shwon. If in equilibrium, the body is in the shown configuration, ratio ${ }^{`} \mathrm{M} / / \mathrm{m}$ will be

A. 2
B. 3
C. $\sqrt{2}$
D. $\sqrt{3}$

Answer: D

- Watch Video Solution

18. What is the modulation index of an FM signal having a carrier swing of 100 kHz when
the modulating signal has a frequency of 8 kHz ?
A. 6.25
B. 6.23
C. 6.55

D. 6.33

Answer: A

- Watch Video Solution

19. In YDSE, the slits have different widths. As a result, amplitude of waves from slits are A and

2A respectively. If I_{0} be the maximum intensity
of the intensity of the interference pattern
then the intensity of the pattern at a point where the phase difference between waves is
ϕ is given by $\frac{I_{0}}{P}(5+4 \cos \phi)$. Where P is in in integer. Find the value of P ?
A. 9
B. 6
C. 1
D. 3

Answer: A
(Watch Video Solution

20. The transverse displacement $y(x, t)$ of a

wave on a string is given by
$y(x, t)=e^{-\left(a x^{2}+b t^{2}+2 \sqrt{(a b)} x t\right)}$.
represents a :
A. Wave moving along $+x$-axis with a speed
$\sqrt{\frac{a}{b}}$
B. Wave moving along x-axis with speed
$\sqrt{\frac{b}{a}}$
C. Standing wave of frequency \sqrt{b}
D. Standing wave of frequency $\frac{1}{\sqrt{b}}$

Answer: B

D Watch Video Solution

21. A block of mass 1 kg is released from the top of a rough incline having $\mu=\frac{1}{\sqrt{3}}$. The initial speed of the block is $2 m s^{-1}$. The inclined plane has unknown length and has a spring of spring constant $k=1 N m^{-1}$ connected at the base as in the figure. Find
the maximum compression of spring. (answer

in meter).

D Watch Video Solution

22. In a sample initially there are equal number of atoms of two radioactive isotopes A and B.

3 days later the number of atoms of A is twice
that of B. Half life of B is 1.5 days. What is half life of isotope A? (in days)

D Watch Video Solution

23. A totally reflecting small plane mirror placed horizontally faces a parallel beam of
light as shown in the figure. The mass of the mirror is 200 g . Assume that there is no absorption in the lens and that 20% of the
light emitted by the source goes through the
lens. The power of the source needs to
support the weight of the mirror is $P \times 10^{8}$
watt, where P is [take $g=10 m s^{-2}$]

D Watch Video Solution

24. A uniform rod of mass m and length L is
hinged at one of its end with the ceiling and another end of the rod is attached with a
thread which is attached with the horizontal ceiling at point P. If one end of the rod is slightly displaced horizontally and perpendicular to the rod and released. If the time period of small oscillation is $2 \pi \sqrt{\frac{2 l \sin \theta}{x g}}$
. Find x.

- Watch Video Solution

25. Figure shows a square loop $A B C D$ with edge length a. The resistance of the wire ABC is r and that of ADC is $2 r$. Find the magnetic field B at the centre of the loop assuming
uniform wires.

(D) Watch Video Solution
