# đず doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - NTA MOCK TESTS

## NTA JEE MOCK TEST 52

Physics

1. A hydrogen atom and a $\mathrm{Li}^{2+}$ ion are both in
the second excited state. If $l_{H}$ and $l_{L i}$ are their
respective electronic angular momenta, and
$E_{H}$ and $E_{L i}$ their respective energies, then
A. $l_{H}>l_{L i}$ and $\left|E_{H}\right|>\left|E_{L i}\right|$
B. $l_{H}=l_{L i}$ and $\left|E_{H}\right|<\left|E_{L i}\right|$
C. $l_{H}<l_{L i}$ and $\left|E_{H}\right|>\left|E_{L i}\right|$
D. $l_{H}>l_{L i}$ and $\left|E_{H}\right| \gg\left|E_{L i}\right|$

## Answer: B

## - Watch Video Solution

2. A box is put on a scale which is adjusted to
read zero, when the box is empty. A stream of
pebbles is then poured into the base from a height $h$ above its bottom at a rate of $n$ pebbles/s. Each pebble has a mass $m$. If the pebbles collide with the box such that they immediately come to rest after collision, then the scale reading at time t after the pebbles begin to fill the box is [ neglect piling up of pebbles]
A. $m n t$
B. $m n[\sqrt{2 g h}+g t]$
C. mngt
D. zero

## Answer: B

## D Watch Video Solution

3. A particle of mass $m$ is suspended from a ceiling through a string of length L. The particle moves in a horizontal circle of radius $r$.

Find $a$. the speed of the particle and $b$. the
tension in the string. Such a system is called a conical pendulum.
A.

$$
v=\frac{2 r \sqrt{g}}{\left(L^{2}-r^{2}\right)^{1 / 2}} \text { and } T=\frac{3 m g L}{\left(L^{2}-r^{2}\right)^{1 / 2}}
$$

B.

$$
v=\frac{r \sqrt{g}}{\left(L^{2}-r^{2}\right)^{1 / 4}} \text { and } T=\frac{m g L}{\left(L^{3}-r^{3}\right)^{1 / 3}}
$$

C.

$$
v=\frac{3 r \sqrt{g}}{\left(L^{2}-r^{2}\right)^{1 / 2}} \text { and } T=\frac{m g L}{\left(L^{2}-r^{2}\right)^{1 / 2}}
$$

D.

$$
v=\frac{r \sqrt{g}}{\left(L^{2}-r^{2}\right)^{1 / 4}} \text { and } T=\frac{m g L}{\left(L^{2}-r^{2}\right)^{1 / 2}}
$$

## Answer: D

## - Watch Video Solution

4. Graph of position of image vs position of point object from a convex lens is shown.

Then, focal length of the lens is

A. $(0.50 \pm 0.05) \mathrm{cm}$
B. $(5.00 \pm 0.05) \mathrm{cm}$
C. $(0.50 \pm 0.10) \mathrm{cm}$
D. $(5.00 \pm 0.10) \mathrm{cm}$

Answer: B

## D Watch Video Solution

5. In the given circuit the R.M.S values of voltages across the capacitor $C$, inductor $L$ and resistor $R_{1}$ are $12 \mathrm{~V}, 10 \mathrm{~V}$ and 5 V respectively.

Then the peak voltage across $R_{2}$ is

A. $7 \sqrt{2} V$
B. $\sqrt{69} V$
C. $\sqrt{138} V$

## D. none of these

## Answer: C

## D Watch Video Solution

6. Two long coaxial cylindrical metal tubes
(inner radius a , outer radius b) stand vertically in a tank of dielectric oil (of mass density $\rho$, dielectric constant $K$ ). The inner one is maintained at potential $V$ and the outer one is
grounded. To what equilibrium height (h) does
the oil rise in the space between the tubes?
[Assume this height (h) as an equilibrium height]

$$
\begin{aligned}
& \text { A. } \frac{\varepsilon_{0} 2 V^{2}(K-1)}{g \rho\left(b^{2}-a^{2}\right) 1 n\left(\frac{b}{a}\right)} \\
& \text { B. } \frac{\varepsilon_{0} 2 V^{2}(K-1)}{\rho\left(b^{2}-a^{2}\right) g 1 n\left(\frac{b}{a}\right)} \\
& \text { C. } \frac{4 \varepsilon_{0} 2 V^{2}(K-1)}{g \rho\left(b^{2}-a^{2}\right) 1 n\left(\frac{b}{a}\right)} \\
& \text { D. } \frac{6 \varepsilon_{0} 2 V^{2}(K-1)}{\rho\left(b^{2}-a^{2}\right) g 1 n\left(\frac{b}{a}\right)}
\end{aligned}
$$

Answer: B
7. Using the conservation laws, demonstrate that the total mechanical energy of a planet of mass $m$ moving around the Sun along an ellipse depends only on its semi-major axis a.

Find this energy as a function of a.

$$
\begin{aligned}
& \text { A. }-\frac{G M_{s} m}{2 a} \\
& \text { B. } \frac{G M_{s} m}{2 a} \\
& \text { C. } \frac{G M_{s} m}{3 a} \\
& \text { D. }-\frac{G M_{s} m}{3 a}
\end{aligned}
$$

## Answer: A

## D Watch Video Solution

8. The figure shows a system of two concentric spheres of radii $r_{1}$ and $r_{2}$ are kept at temperature $T_{1}$ and $T_{2}$, respectively. The radial rate of flow of heat in a substance between the two concentric spheres is
proportional to


$$
\begin{aligned}
& \text { A. } \frac{r_{1} r_{2}}{\left(r_{2}-r_{1}\right)} \\
& \text { B. }\left(r_{2}-r_{1}\right) \\
& \text { C. } \frac{\left(r_{2}-r_{1}\right)}{r_{1} r_{2}} \\
& \text { D. } \ln \left(\frac{r_{2}}{r_{1}}\right)
\end{aligned}
$$

Answer: A

## - Watch Video Solution

9. As shown in figure the tension in the horizontal cord is $30 N$. The weight $W$ and tension in the string $O A$ in Newton are

A. $30 \sqrt{3}, 30$
B. $30 \sqrt{3}, 60$
C. $60 \sqrt{3}, 30$
D. None of the above

Answer: B

## - Watch Video Solution

10. Find the decay constant of.${ }^{55} \mathrm{Co}$ radio nuclide if its activity is known to decrease $4 \%$ per hour. The decay product is non-radioactive.
A. $1.1 \times 10^{-5} s^{-1}$
B. $1.10 \times 10^{-2} s^{-1}$
C. $1.1 \times 10^{-2} s^{-1}$
D. $1.09 \times 10^{-5} s^{-1}$

Answer: A

## D Watch Video Solution

11. The equation of a simple harmonic progressive wave is given by $y=A \sin$
$(100 \pi t-3 x)$. Find the distance between 2 particles having a phase difference of $\frac{\pi}{3}$.
A. $\frac{\pi}{9} m$
B. $\frac{\pi}{18} m$
C. $\frac{\pi}{6} m$
D. $\frac{\pi}{3} m$

Answer: A
( Watch Video Solution
12. The potential energy of a particle varies as .
$U(x)=E_{0}$ for $0 \leq x \leq 1$
$=0$ for $x>1$
for $0 \leq x \leq 1$ de- Broglie wavelength is $\lambda_{1}$
and for $x>1$ the de-Broglie wavelength is $\lambda_{2}$.
Total energy of the particle is $2 E_{0}$. find $\frac{\lambda_{1}}{\lambda_{2}}$.
A. $\sqrt{(3)}$
B. $\sqrt{(7)}$
C. $\sqrt{(2)}$
D. $\sqrt{(5)}$

Answer: C

## D Watch Video Solution

13. A sphere of radius $0.1 m$ and mass $8 \pi k g$ is
attached to the lower end of a steel wire of
length 5.0 m and diameter $10^{-3} \mathrm{~m}$. The wire is suspended from $5.22 m$ high ceiling of a room .

When the sphere is made to swing as a simple pendulum, it just grazes the floor at its lowest point. Calculate the velocity of the sphere at
the lowest position. Young's modulus of steel
is $\left(1.994 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\right)$.
A. $7.7 m s^{-1}$
B. $4.4 m s^{-1}$
C. $2.2 m s^{-1}$
D. $8.8 m s^{-1}$

Answer: D
( Watch Video Solution
14. An observer can see through a pin-hole the top end of a thin rod of height $h$, placed as shown in the figure. The beaker height is 3 h and its radius $h$. When the beaker is filled with a liquid up to a height 2 h , he can see the lower end of the rod. Then the refractive index of the liquid is

A. $\frac{5}{2}$
B. $\sqrt{\frac{5}{2}}$
C. $\sqrt{\frac{3}{2}}$
D. $\frac{3}{2}$

Answer: B

## D Watch Video Solution

15. A cubical block of side a is moving with
velocity v on a horizontal smooth plane as
shown. It hits a ridge at point 0 . The angular

A. $\frac{3 v}{4 a}$
B. $\frac{3 v}{2 a}$
C. $\frac{\sqrt{3} v}{\sqrt{4} a}$
D. Zero

Answer: A
16. A particular semiconductor in equilibrium
has $1 \times 10^{16} \mathrm{~cm}^{-3}$ donor atoms,
$1.1 \times 10^{17} \mathrm{~cm}^{-3}$ acceptor atoms. If the
intrinsic carrier density $\left(n_{i}\right)$ of the semiconductor is $10^{12} \mathrm{~cm}^{-3}$, then the electron density in it will be
A. $10^{16} \mathrm{~cm}^{-3}$
B. $10^{12} \mathrm{~cm}^{-3}$
C. $1.1 \times 10^{17} \mathrm{~cm}^{-3}$
D. $10^{7} \mathrm{~cm}^{-3}$

## Answer: D

## D Watch Video Solution

17. One mole of monatomic ideal gas
undergoes the process $A \rightarrow B$, as in the given $P-V$ diagram. The specific heat for
this process is

A. $\frac{3 R}{2}$
B. $\frac{15 R}{7}$
C. $\frac{30 R}{7}$
D. $\frac{20 R}{7}$

Answer: B

## D Watch Video Solution

18. If $x, v$ and a denote the displacement, the
velocity and the acceleration of a particle executing simple harmonic motion of time period $T$, then, which of the following does not change with time ?
A. $\frac{a T}{v}$
B. $a T+2 \pi v$
C. $a^{2} T^{2}+4 \pi^{2} v^{2}$
D. aT

## Answer: A

## D Watch Video Solution

19. An open pipe is in resonance in $2 n d$
harmonic with frequency $f_{1}$. Now one end of
the tube is closed and frequency is increased
to $f_{2}$ such that the resonance again ocuurs in
$n t h$ harmonic. Choose the correct option

> A. $n=3, f_{2}=\frac{3}{4} f_{1}$
> B. $n=3, f_{2}=\frac{5}{4} f_{1}$
> C. $n=5, f_{2}=\frac{5}{4} f_{1}$
> D. $n=5, f_{2}=\frac{3}{4} f_{1}$

Answer: C

## D Watch Video Solution

20. A 0.5 kg block slides from the point A on a horizontal track with an initial speed $3 \mathrm{~m} / \mathrm{s}$ towards a weightless horizontal spring of
length $1 m$ and force constant $2 N / m$. The part $A B$ of the track is frictionless and the part $B C$ has the coefficient of static and kinetic friction as ' 0.22 ' and 0.20 respectively. If the distances $A B$ and $B D$ are $2 m$ and $2.14 m$ respectively, find total distance through which
the block moves before it comes to rest completely. ${ }^{`}\left(g=10 \mathrm{~m} / / \mathrm{s}^{\wedge}(2)\right)$.
A. 2.5 m
B. 4.42 m
C. 4.24 m
D. 2.44 m .

## Answer: C

## D Watch Video Solution

21. In the circuit shown in the figure (A), $R_{3}$ is a
variable resistance



As the value $R_{3}$ is changed, current I though
the cell varies as shown. Obvioulsy, the variation is asymptotic, i.e. $I \rightarrow 6 A$ as $R_{3} \rightarrow \infty . \quad$ Resistance $\quad R_{1}$ and $R_{2} \quad$ are, respectively

## D Watch Video Solution

22. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature
T. Neglecting all vibrational modes, the total internal energy of the system is
23. A long straight wire carrying current of $30 A$ is placed in an external uniform magnetic field of induction $4 \times 10^{4} T$. The magnetic field is acting parallel to the direction of current.

The magnetic of the resultant magnetic induction in tesla at a point 2.0 cm away form the wire is

## - Watch Video Solution

24. A ball is projected form the ground at an angle of $45^{\circ}$ with the horizontal surface . It reaches a maximum height of 120 m and return to the ground .upon hitting the ground for the first time it loses half of its kinetic energy immediately after the bounce the velocity of the ball makes an angle of $30^{\circ}$ with the horizontal surface .The maximum height it reaches after the bounce in metres is
25. In a double slit experiment ,the separation between the slits is $d=0.25 \mathrm{~cm}$ and the distance of the screen $D=100 \mathrm{~cm}$ from the slits .if the wavelength of light used in
$\lambda=6000 \AA$ and $I_{0}$ is the intensity of the central bright fringe.the intensity at a distance $x=4 \times 10^{-5}$ in form the central maximum is-

## - Watch Video Solution

