©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 56

Physics

1. A hydrogen - like neutral species in some excited state A, on absorbing a photon of energy 3.066 eV get excited to a new state B .

When the electron from state B returns back, photons of a maximum ten different wavelengths can be observed in which some photons are of energy smaller than 3.066 eV , some are of equal energy and only four photons are having energy greater than 3.066 eV . The ionization energy of this atom is
A. 14.6 eV
B. 3.066 eV
C. 6.132 eV
D. 9.2 eV

Answer: A

D Watch Video Solution

2. A ball (initially at rest) falls vertically for 2 s
and hits a smooth plane inclined at 30° to the The distance along the plane between the first and second impact of the ball is
A. 40.63 m
B. 20.63 m

C. 30.63 m

D. 50.63

Answer: A

D Watch Video Solution

3. The kinetic energy K of a particle moving along a circle of radius R depends upon the distance s as $K=a s^{2}$. The force acting on the particle is
A. $2 a \frac{s^{2}}{R}$
B. $2 a s\left(1+\frac{s^{2}}{R^{2}}\right)^{\frac{1}{2}}$
C. $2 a s$
D. $2 a$

Answer: B

D Watch Video Solution

4. A target is made of two plates, one of wood and the other of iron. The thickness of the
wooden plate is 4 cm and that of iron plate is
2 cm . A bullet fired goes through the wood
first and then penetrates 1 cm into iron. A similar bullet fired with the same velocity from opposite direction goes through iron first and
then penetrates 2 cm into wood. If a_{1} and a_{2} be the retardations offered to the bullet by wood and iron plates, respectively, then

$$
\begin{aligned}
& \text { A. } a_{1}=2 a_{2} \\
& \text { B. } a_{2}=2 a_{1} \\
& \text { C. } a_{1}=a_{2}
\end{aligned}
$$

D. Data insufficient

Answer: B

D Watch Video Solution

5. A metal bar $A B$ can slide on two parallel
thick metallic rails separated by a distance I. A
resistance R and an inductance L are connected to the rails as shown in the figure.

A long straight wire carrying a constant current I_{0} is placed in the plane of the rails
and perpendicular to them as shown. The bar

AB is held at rest at a distance x_{0} from the
long wire. At $\mathrm{t}=0$, it is made to slide on the
rails away from wire. Answer the following questions.
(a) Find a relation among $i, \frac{d i}{d t}$ and $\frac{d \phi}{d t}$, where i is the current in the circuit and ϕ is
the flux of the megnetic field due to the long
wire through the circuit.
(b) It is observed that at time $\mathrm{t}=\mathrm{T}$, the metal bar $A B$ si at a distance of $2 x_{0}$ from the long wire and the resistance R carries a current $\left(i_{1}\right)$
. Obtain an expression for the net charge that
has flown through riesistance R form $\mathrm{t}=0$ to
$\mathrm{t}=\mathrm{T}$.
(c) THe bar is suddenly stopped at time T. THe current through resistance R is found to be $\frac{i_{1}}{4}$ at time 2 T. Find the value of $\frac{L}{R}$ in terms of hte other given quantities.

A. $\frac{1}{R}\left[\frac{\mu_{0} l}{2 \pi} \ln (2)-L i_{1}\right]$

> B. $\frac{1}{R}\left[\frac{\mu_{0} I_{0} l}{\pi} \ln (2)-L i_{1}\right]$
> C. $\frac{1}{R}\left[\frac{\mu_{0} I_{0} l}{2 \pi} \ln (2)-L i_{1}\right]$
> D. $\frac{1}{R}\left[\frac{\mu_{0} I_{0}}{2 \pi} \ln (2)-L i_{1}\right]$

Answer: C

D Watch Video Solution

6. The reading of the ammeter and voltmeters are (Both the instruments are ac meters and
measures rms value)-

A. $2 \mathrm{~A}, 110 \mathrm{~V}$
B. 2A, 0 V
C. $2 \mathrm{~A}, 55 \mathrm{~V}$
D. 1 A, 0 V

Answer: B
7. A circle of radius a has charge density given by $\lambda=\lambda_{0} \cos ^{2} \theta$ on its circumference, where
λ_{0} is a positive constant and θ is the angular position of a point on the circle with respect to some reference line. The potential at the centre of the circle is
A. $\frac{\lambda_{0}}{4 \varepsilon_{0}}$
B. zero
C. $\frac{\lambda_{0}}{2 \varepsilon_{0}}$
D. $\frac{\lambda_{0}}{\varepsilon_{0}}$

Answer: A

D Watch Video Solution

8. Find the minimum attainable pressure of an
ideal gas in the process $T=T_{0}+\alpha V^{2}$,
Where T_{0} and α are positive constant and V is
the volume of one mole of gas. Draw the approximate $T-V$ plot of this process.
A. $2 R \sqrt{\alpha T_{0}}$
B. $3 R \sqrt{\alpha T_{0}}$
C. 3 R
D. $3 R \sqrt{\frac{\alpha T_{0}}{2}}$

Answer: A

- Watch Video Solution

9. A condutor carrying current I is placed parallel to a current per unit width j_{0} and width d, as shown in the Find the force per
unit length on the conductor

A. $\frac{\mu_{0} j_{0} i}{\pi} \tan ^{-1}\left(\frac{d}{2 h}\right)(-\hat{k})$
B. $\frac{\mu_{0} j_{0} i}{\pi} \tan ^{-1}\left(\frac{2 h}{d}\right)(-\hat{k})$
C. $\frac{j_{0} i}{\mu_{0} \pi} \tan ^{-1}\left(\frac{2 h}{d}\right)(-\hat{k})$
D. $\frac{j_{0} i}{\mu_{0} \pi} \tan ^{-1}\left(\frac{d}{2 h}\right)(-\hat{k})$

Answer: A

- Watch Video Solution

10. A $2-m$ wide truck is moving with a
uniform speed $v_{0}=8 m s^{-1}$ along a straight
horizontal road. A pedestrian starts to cross
the road with a uniform speed v when the
truck is $4 m$ away from him, The minimum
value of v so that he can cross the road safely
is .

> A. $\frac{6}{\sqrt{5}} m s^{-1}$
> B. $\frac{4}{\sqrt{5}} m s^{-1}$
> C. $\frac{8}{\sqrt{5}} m s^{-1}$
> D. $\frac{2}{\sqrt{5}} m s^{-1}$

Answer: C

D Watch Video Solution
11. The wavelength of a photon and de Broglie wavelength an electron have the same value. Given that v is the speed of electron and
c is the velocity of light. E_{e}, E_{p} is the kinetic energy of electron and energy of photon respectively while p_{e}, p_{h} is the momentum of electron and photon respectively. Then which of the following relation is correct?

$$
\begin{aligned}
& \text { A. } \frac{E_{e}}{E_{p}}=\frac{v}{2 c} \\
& \text { B. } \frac{E_{e}}{E_{p}}=\frac{2 c}{v} \\
& \text { C. } \frac{p_{e}}{p_{h}}=\frac{v}{2 c} \\
& \text { D. } \frac{p_{e}}{p_{h}}=\frac{2 c}{v}
\end{aligned}
$$

Answer: A
12. A layer of oil with density $724 \mathrm{~kg} \mathrm{~m}{ }^{-3}$ floats on water of density $1000 \mathrm{kgm}^{-3}$. A block floats on the oil-water interface with $1 / 6$ of its volume in oil and $5 / 6$ of its volume in water, as shown in the figure. What is the density of the block?

A. $1024 \mathrm{~kg} \mathrm{~m}^{-3}$
B. $1276 \mathrm{~kg} \mathrm{~m}^{-3}$
C. $776 \mathrm{~kg} \mathrm{~m}^{-3}$
D. $954 \mathrm{~kg} \mathrm{~m}^{-3}$

Answer: D

D Watch Video Solution

13. An object 2.4 m in front of a lens forms a sharp image on a film 12 cm behind the lens. A glass plate 1 cm thick, of refractive index 1.50 is
interposed between lens and film with its
plane faces parallel to film. At what distance
(from lens) should object shifted to be in
sharp focus of film?
A. 2.4 m
B. 3.2 m
C. 5.6 m
D. 7.2 m

Answer: C

14. A cylinder weighing 450 N with a radius of

30 cm is held fixed on an incline that is rotating at $0.5 \mathrm{rads}^{-1}$. The cylinder is released when the incline is at position θ equal to 30°. If the cylinder is 6 m from the bottom A at the instant of release, what is the initial acceleration of the centre of the cylinder relative to the incline, if there is no
slipping ? $\left(g=10 m s^{-2}\right)$

A. $2.33 \mathrm{~ms}^{-2}$
B. $4.66 \mathrm{~ms}^{-2}$
C. $1.33 \mathrm{~ms}^{-2}$
D. $3.33 \mathrm{~ms}^{-2}$

Answer: A

Watch Video Solution

15. A TV tower has a height of 150 m . The area of the region covered by the TV broadcast is
(Radius of earth $=6.4 \times 10^{6} \mathrm{~m}$)
A. $9.6 \pi \times 10^{8} \mathrm{~km}^{2}$
B. $19.2 \pi \times 10^{8} \mathrm{~km}^{2}$
C. $19.2 \pi \times 10^{8} \mathrm{~km}^{2}$
D. $1.92 \pi \times 10^{8} \mathrm{~km}^{2}$
16. The co-efficient of thermal expansion of a rod is temperature dependent and is given by the formula $\alpha=a T$, where a is a positive constant at T in ${ }^{\circ} C$. if the length of the rod is I at temperature $0^{\circ} \mathrm{C}$, then the temperature at which the length will be $2 l$ is
A. $10^{\circ} \mathrm{C}$
B. $20^{\circ} \mathrm{C}$
C. $200^{\circ} \mathrm{C}$
D. $100^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

17. If E and B denote electric and magnetic
fields respectively, which of the following is dimensionless?

$$
\begin{aligned}
& \text { A. } \sqrt{\mu_{0} \varepsilon_{0}} \frac{E}{B} \\
& \text { B. } \mu_{0} \varepsilon_{0} \frac{E}{B}
\end{aligned}
$$

C. $\mu_{0} \varepsilon_{0}\left(\frac{B}{E}\right)^{2}$
D. $\frac{\mu_{0} E}{B e_{0}}$

Answer: A

D Watch Video Solution

18. Frequency of the em signal emitted by a rocket । $4 \times 10^{7} \mathrm{~Hz}$. If apparent frequency observed on earth is $3.2 \times 10^{7} H z$, then velocity with which rocket is moving away is [speed of light = c]
A. 0.5 c
B. 0.7 c
C. 0.9 c
D. 0.2 c

Answer: D

D Watch Video Solution

19. Waves $y_{1}=A \cos (0.5 \pi x-100 \pi t)$ and
$y_{2}=A \cos (0.46 \pi x-92 \pi t) \quad$ are travelling
along x-axis. (Here x is in m and t is in second)
(3) The number of times $y_{1}+y_{2}=0$ at $x=0$ in 1 sec is
A. 46
B. 48
C. 192
D. 100

Answer: D
(Watch Video Solution
20. A body of mass m, accelerates uniformly
from rest to V_{1} in time t_{1}. The instantaneous
power delivered to the body as a function of
time t is.

$$
\begin{aligned}
& \text { A. } \frac{m \nu_{1} t}{t_{1}} \\
& \text { B. } \frac{\nu_{1}^{2} t}{t_{1}^{2}} \\
& \text { C. } \frac{m \nu_{1} t^{2}}{t_{1}} \\
& \text { D. } \frac{m \nu_{1}^{2} t}{t_{1}}
\end{aligned}
$$

Answer: B
21. A satellite is launched into a circular orbit of radius R around the earth. A second satellite is launched into an orbit of radius
(1.01) R. The period of the second satellite is larger than the first one by approximately

D Watch Video Solution

22. A body cools in 7 minutes from $60^{\circ} C$ to
$40^{\circ} \mathrm{C}$. What will be its temperature after the
next 7 minutes? The temperature of the surroundings is $10^{\circ} C$.

D Watch Video Solution

23. A ring of mass 5 kg sliding on a frictionless
vertical rod connected by a clock B of mass 10
kg by the help of a massless string.

Then, at the equilibrium of the system, the
value of θ is

- Watch Video Solution

24. which a U^{238} nucleus original at rest, decay by emitting an alpha particle having a
speed u, the recoil speed of the residual nucleus is

D Watch Video Solution

25. A cylinder of mass $M=2 \mathrm{~kg}$ and radius $\mathrm{R}=$

12 cm lies on a plank of the same mass as
shown in the figure. The surface between
plank and ground is smooth but there is
friction between cylinder and plank. If the coefficient of friction between the cylinder and
the plank is $\mu=0.4$, then what maximum
initial compression (in cm) can be given to the
spring such that the cylinder moves without
slipping with respect to the plank ?
[Given, $k=200 \mathrm{~N} \mathrm{~m}^{-1}$]

- Watch Video Solution

