©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 58

Physics

1. An electron is moving in an orbit of a
hydrogen atom from which there can be a maximum of six transition. An which there can
be a maximum of three transition. Find ratio of the velocities of the electron in these two orbits.

> A. $\frac{1}{2}$
> B. $\frac{2}{3}$
> C. $\frac{5}{4}$
> D. $\frac{3}{4}$

Answer: D

D Watch Video Solution
2. In the diagram shown, no friction at any contact surface. Initailly, the spring has no deformation .What will be the maximum deformation in the spring? Consider all the strings to be sufficiently large. Consider the spring constant to be K.

A. $\frac{4 F}{3 K}$
B. $\frac{8 F}{3 K}$
C. $\frac{F}{3 K}$

D. None of these

Answer: B

D Watch Video Solution

3. A small coin of mass 40 g is placed on the horizontal surface of a rotating disc. The disc starts from rest and is given a constant angular acceleration $\alpha=2 \operatorname{rads}^{-2}$. The coefficient of static friction between the coin and the disc is $\mu_{s}=3 / 4$ and the coefficient of
kinetic friction is $\mu_{k}=0.5$. The coin is placed at a distance $r=1 m$ from the centre of the disc. The magnitude of hte resultant force on the coin exerted by the disc just before it starts slipping on the disc is :

A. 0.2 N
B. 0.3 N
C. 0.4 N
D. 0.5 N

Answer: D

D Watch Video Solution
4. A cell of emf E and internal resistance r supplies currents for the same time t through
$R_{1}=100 \Omega$ and $R_{2}=40 \Omega$ separately. If the heat developed in both cases is the same, then the internal resistance of the cell is
A. 28.6Ω
B. 70Ω
C. 63.3Ω
D. 140Ω

Answer: C

- Watch Video Solution

5. An equilateral triangular loop $A D C$ having some resistance is pulled with a constant velocity v out of a uniform magnetic field directed inot the paper. At time $t=0$, side
$D C$ of the loop at is at edge of the magnetic field.

The induced current (i) versus time (t) graph will be as

- Watch Video Solution

6. An insulating solid sphere of the radius R is
charged in a non - uniform manner such that
the volume charge density $\rho=\frac{A}{r}$, where A is
a positive constant and r is the distance from
the centre. The potential difference between
the centre and surface of the sphere is

$$
\begin{aligned}
& \text { A. } \frac{A R}{8 \varepsilon_{0}} \\
& \text { B. } \frac{A R}{4 \varepsilon_{0}} \\
& \text { C. } \frac{A R}{\varepsilon_{0}}
\end{aligned}
$$

D. $\frac{A R}{2 \varepsilon_{0}}$

Answer: D

D Watch Video Solution

7. Suppose the gravitational force varies inversely as the $n^{t h}$ power of distance. Then the time period of a planet in circular orbit of radius R around the sun will be proportional to-
A. R^{-n}
B. $R^{\frac{(n-1)}{2}}$
C. $R^{\frac{(n+1)}{2}}$
D. R^{n}

Answer: C

D Watch Video Solution

8. A rod of length I (laterally thermally insulated) of the uniform cross sectional area

A consists of a material whose thermal
$K=\frac{K_{0}}{a+b T^{\prime}}$ where $K_{0}, \quad \mathrm{a}$ and b are constants. T_{1} and $T_{2}\left(<T_{1}\right)$ are the temperatures of the ends of the rod. Then, the rate of flow of heat across the rod is

$$
\begin{aligned}
& \text { A. } \frac{A K_{0}}{b l}\left(\frac{a+b T_{1}}{a+b T_{2}}\right) \\
& \text { B. } \frac{A K_{0}}{b l}\left(\frac{a+b T_{2}}{a+b T_{1}}\right) \\
& \text { C. } \frac{K_{0} A}{b l} \ln \left[\frac{a+b T_{1}}{a+b T_{2}}\right] \\
& \text { D. } \frac{A K_{0}}{b l} \ln \left[\frac{a+b T_{2}}{a+b T_{1}}\right]
\end{aligned}
$$

Answer: C

9. An ideal diatomic gas undergoes a thermodynamic process as shown in the $P-V$ diagram. The process AB is isochoric while the process $B C$ is isothermal. The total heat gain to the gas in the process is nearly (use $\ln 2=0.7$)

A. $2.5 P_{0} V_{0}$
B. $1.4 P_{0} V_{0}$
C. $3.9 P_{0} V_{0}$
D. $1.1 P_{0} V_{0}$

Answer: C

D Watch Video Solution

10. A man crosses a river in a boat. If he cross
the river in minimum time he takes 10 min
with a drift 120 m . If he crosses the river
taking shortest path, he takes 12.5 min, find
(a) width of the river
(b) velocity of the boat with respect to water
(c) speed of the current
A. 215 m
B. 150 m
C. 100 m
D. 200 m

Answer: D

11. The friction coefficient between the board
and the floor shown in figure is μ Find the maximum force that the man can exert on the rope so that the board does not slip on the floor

A. $\frac{\mu(m+n) g}{(2+\mu)}$
B. $\frac{\mu(m+M) g}{(1+\mu)}$
C. $\frac{\mu(m+M) g}{(2-\mu)}$
D. $\frac{\mu(m+M) g}{(1-\mu)}$

Answer: B

D Watch Video Solution

12. A radionuclide with half - life 1620 s is produced in a reactor at a constant rate of 1000 nuclei per second. During each decay
energy, 200 MeV is released. If the production of radionuclides started at $t=0$, then the rate of release of energy at $t=3240 \mathrm{~s}$ is

> A. $1.5 \times 10^{5} \mathrm{MeV} \mathrm{s}^{-1}$
> B. $1.5 \times 10^{2} \mathrm{MeV} \mathrm{s}^{-1}$
> C. $2.5 \times 10^{2} \mathrm{MeV} \mathrm{s}^{-1}$
> D. $3.5 \times 10^{5} \mathrm{MeV} \mathrm{s}^{-1}$

Answer: A

D Watch Video Solution
13. A disc of radius R and mass M is pivoted at the rim and it set for small oscillations. If simple pendulum has to have the same period as that of the disc, the length of the simple pendulum should be

$$
\begin{aligned}
& \text { A. } \frac{5}{4} R \\
& \text { B. } \frac{2}{3} R \\
& \text { C. } \frac{3}{4} R \\
& \text { D. } \frac{3}{2} R
\end{aligned}
$$

Watch Video Solution

14. In a photoelectric effect experiment, stopping potential changes by 30 volt if we change frequency of the radiation. Then the magnitude of change in the frequency is :

$$
\left(h=6 \times 10^{-34} J-s\right)
$$

A. $4 \times 10^{-15} s^{-1}$
B. $8 \times 10^{15} s^{-1}$
C. $10^{16} s^{-1}$
D. $18 \times 10^{15} s^{-1}$

Answer: B

D Watch Video Solution

15. The length of a metal wire is l_{1} when the tension in it is T_{1} and is l_{2} when the tension is
T_{2}. Then natural length of the wire is

$$
\begin{aligned}
& \text { A. } \frac{l_{1}+l_{2}}{2} \\
& \text { B. } \sqrt{l_{1} l_{2}} \\
& \text { C. } \frac{l_{1} T_{2}-l_{2} T_{1}}{T_{2}-T_{1}} \\
& \text { D. } \frac{l_{1} T_{2}+l_{2} T_{1}}{T_{2}+T_{1}}
\end{aligned}
$$

Answer: C

- Watch Video Solution

16. A light ray is incident on lower medium
boundary at an angle 30° with the normal.
Which of following statement is/are true ?

A. If $\mu_{2}>2$, then total deviation is 60°
B. If $\mu_{2}<2$, then total deviation is 30°
C. If $\mu_{2}>2$, then the deviation is 120°
D. If $\mu_{2}<2$, then total deviation is 180°

Answer: A

D Watch Video Solution

17. 1000 kHz carrier wave is amplitude modulated by the signal frequency 2004000 Hz . The channel width of this case is
A. 8 kHz
B. 4 kHz
C. 7.6 kHz
D. 400 kHz

Answer: A

D Watch Video Solution

18. A pendulum clock (fitted with a small heavy bob that is connected with a metal rod) is 5 seconds fast each day at a temperature of
$15^{\circ} \mathrm{C}$ and 10 seconds slow at a temperature of $30^{\circ} \mathrm{C}$. The temperature at which it is designed to give correct time, is
A. $18^{\circ} C$
B. $22^{\circ} C$
C. $20^{\circ} \mathrm{C}$
D. $25^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution
19. The unit of electric permittivity is $\frac{C}{N m^{2}}$.

Find the dimensions of electric permittivity
A. $\left[a^{2} M^{-1} L^{-3} T^{4}\right]$
B. $\left[A^{2} M^{-1} L^{-3} T^{0}\right]$
C. $\left[A M^{-1} L^{-3} T^{4}\right]$
D. $\left[A^{2} M^{0} L^{-3} T^{4}\right]$

Answer: A

D Watch Video Solution

20. The blocks A and B shown in figure have masses $\quad M_{A}=5 k g \quad$ and $\quad M_{B}=4 k g$. The system is released from rest. The speed of B after A has travelled a distance 1 m along the incline is

B. $\sqrt{\frac{15}{8}}$
C. $\sqrt{\frac{5}{6}}$
D. $\sqrt{\frac{5}{2}}$

Answer: C

D Watch Video Solution

21. A boat covers 24 km upstream and 36 km
downstream in 6 hours while it covers 36 km upstream and 24 km downstream in $6 \frac{1}{2}$ hours.

The velocity of the current is $1 \mathrm{~km} / \mathrm{hr} \mathrm{b}$. 1. $5 \mathrm{~km} / \mathrm{hr} \mathrm{c} .2 \mathrm{~km} / \mathrm{hr}$ d. $2 . \mathrm{km} / \mathrm{hr}$

D Watch Video Solution

22. A non - conducting rod of length L with
linear charge density $\lambda=\lambda_{0} x$ where x is the distance from end A is rotating with constant angular speed ω about the same end. If the angular velocity of the $\operatorname{rod}(\omega)$ is large, then the magnetic dipole moment of the system is

$\omega \lambda_{0} L^{4}$ What is the value of n ? n

- Watch Video Solution

23. The instaneous velocity of point B of the given rod of length 0.5 is $3 \mathrm{~m} / \mathrm{s}$ in the represented direction. The angualr velocity of
the rod for minimum velocity of end A is

- Watch Video Solution

24. In Young's double - slit experiment, the distance between slits is $d=0.25 \mathrm{~cm}$ and the
distance of the screen $D=120 \mathrm{~cm}$ from the
slits. If the wavelength of light used is
$\lambda=6000 \AA$ and I_{0} is the intensity of central
maximum, then the minimum distance of the point from the centre, where the intensity is $\frac{I_{0}}{2}$ is $k \times 10^{-5} m$. What is the value of k ?

D Watch Video Solution

25. An observer standing on a railway crossing receives frequencies 2.2 kHz and 1.8 kHz when
the train approaches and recedes from the observer. Find the velocity of the train (speed of sound in air is $300 \mathrm{~m} / \mathrm{s}$).
\square
