©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 59

Physics

1. A hydrogen atom moving at speed v collides
with another hydrogen atom kept at rest .Find
the minimum value of v for which one of the
atoms may get ionized, the mass of a hydrogen atom $=1.67 \times 10^{-27} \mathrm{~kg}$
A. $7.2 \times 10^{4} \mathrm{~ms}^{-1}$
B. $2.3 \times 10^{4} \mathrm{~ms}^{-1}$
C. $2.3 \times 10^{5} \mathrm{~ms}^{-1}$
D. $7.2 \times 10^{5} \mathrm{~ms}^{-1}$

Answer: A

- Watch Video Solution

2. Two masses A and B connected with an
inextensible string of length l lie on a smooth
horizontal plane. A is given a velocity of $v m / s$
along the ground perpendicular to line $A B$ as
shown in figure. Find the tension in string

during their subsequent motion

A. $\frac{2 m v^{2}}{3 l}$
B. $\frac{3 m v^{2}}{2 l}$
C. $\frac{m v^{2}}{2 l}$
D. $\frac{4 m v^{2}}{3 l}$

Answer: A

- Watch Video Solution

3. A particle is moving in a circle of radius R in such a way that at any instant the tangential retardation of the particle and the normal acceleration of the particle are equal. If its speed at $t=0$ is v_{0}, the time taken to complete the first revolution is

> A. $\frac{R}{v_{0}}$
> B. $\frac{R}{v_{0}}\left(1-e^{-2 \pi}\right)$
> C. $\frac{R}{v_{0}} e^{-2 \pi}$
> D. $\frac{2 \pi R}{v_{0}}$

Answer: B

D Watch Video Solution

4. A conducting square frame of side ' a ' and
a long straight wire carrying current I are
located in the same plane as shown in the
figure. The frame moves to the right with a constant velocity ' V '. The emf induced in the frame will be proportional to

A. $\frac{1}{x^{2}}$
B. $\frac{1}{(2 x-a)^{2}}$

Answer: D

D Watch Video Solution

5. A, B, C, D, E, and F are conducting plates each of area A, and any two consecutive plates are separated by a distance
d, The energy in system after the switch S is
closed is`

A. $\frac{3 \varepsilon_{0} A}{2 d} V^{2}$
B. $\frac{5 \varepsilon_{0} A}{12 d} V^{2}$
C. $\frac{\varepsilon_{0} A}{2 d} V^{2}$
D. $\frac{\varepsilon_{0} A}{d} V^{2}$

Answer: C

- Watch Video Solution

6. During an adiabatic process, the pressure of
a gas is found to be proportional to the cube of its absolute temperature. The ratio C_{P} / C_{V} for the gas is
A. $4 / 3$
B. 2
C. $5 / 3$

D. $3 / 2$

Answer: D

D Watch Video Solution

7. Two point masses, m each carrying charges
$-q$ and $+q$ are attached to the ends of a massless rigid non - conducting wire of length
L. When this arrangement is placed in a uniform electric field, then it deflects through
an angle θ. The minimum time needed by the
rod to align itself along the field is
A. $2 \pi \sqrt{\frac{m L}{q E}}$
B. $\frac{\pi}{2} \sqrt{\frac{m L}{2 q E}}$
C. $\pi \sqrt{\frac{2 m L}{q E}}$
D. $2 \pi \sqrt{\frac{3 m L}{q E}}$

Answer: B

D Watch Video Solution

8. With what minimum speed must a particle be projected from origin so that it is able to pass through a given point $(30 m, 40 m)$? Take $g=10 m / s^{2}$
A. $60 m s^{-1}$
B. $30 m s^{-1}$
C. $50 m s^{-1}$
D. $40 \mathrm{~ms}^{-1}$

Answer: B
9. A conveyor belt is moving at a constant speed of $2 m / s$. A box is gently dropped on it.

The coefficient of friction between them is
$\mu=0.5$. The distance that the box will move
relative to belt before coming to rest on it taking $g=10 m s^{-2}$ is:
A. $1.2 m$
B. $0.6 m$
C. zero

D. $0.4 m$

Answer: D

- Watch Video Solution

10. The equation of the resultant motion of
the number of simple harmonic motions is
$E_{c}=\left(1+K \sin \omega_{2} t\right) \sin \omega_{1} t$. The number of simple harmonic components is/are.
A. 1
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution

11. When light of wavelength λ is incident on photosensitive surface, the stopping potential is V . When light of wavelength 3λ is incident
on same surface, the stopping potential is $\frac{V}{6}$
Threshold wavelength for the surface is
A. 2λ
B. 3λ
C. 4λ
D. 5λ

Answer: D

D Watch Video Solution

12. A wire of cross section A is stretched horizontally between two clamps located $2 l m$ apart. A weight $W k g$ is suspended from the mid-point of the wire. If the mid-point sags
vertically through a distance $x<l$, the strain produced is
A. $\frac{x^{2}}{l^{2}}$
B. $\frac{2 x^{2}}{l^{2}}$
C. $\frac{x^{2}}{2 l^{2}}$
D. $\frac{x}{2 l}$

Answer: C

- Watch Video Solution

13. A ray of light is incident normally on one of
the faces of a prism of apex angle 30 degree and refractive index $\sqrt{2}$. The angle of deviation of the ray is...degrees.
A. 30°
B. 45°
C. 15°

D. none of these

Answer: C

D Watch Video Solution

14. Average torque on a projectile of mass m
(initial speed u and angle of projection θ) between initial and final positions P and Q as shown in figure, about the point of projection
is :

A. $\frac{m u^{2} \sin (2 \theta)}{2}$
B. $m u^{2} \cos (\theta)$
C. $m u^{2} \sin (\theta)$
D. $\frac{m u^{2} \sin (\theta)}{2}$

Answer: A

- Watch Video Solution

15. In the following common emitter configuration an $N P N$ transistor with current gain $\beta=100$ is used. The output voltage of the amlifier will be

A. 10 mV
B. 0.1 V
C. 1.0 V
D. 10 V

Answer: C

D Watch Video Solution

16. A metal ball of surface area $200 \mathrm{~cm}^{2}$ and temperature $527^{\circ} \mathrm{C}$ is surrounded by a vessel at $27^{\circ} C$. If the emissivity of the metal is 0.4 ,
then the rate of loss of heat from the ball is

$$
\left(\sigma=5.67 \times 10^{-8} J / m^{2}-s-k^{4}\right)
$$

A. 108 W
B. 168 W
C. 182 W
D. 192 W

Answer: C
(Watch Video Solution
17. The physical quantity which has the dimensional formula $\left[M^{1} T^{-3}\right]$ is

A. Surface tension

B. Density
C. Solar constant

D. Compressibility

Answer: C

D Watch Video Solution
18. Consider the optical system shown in figure. The point source of ligth S is having wavelength equal to λ. The light is reaching screen only after reflection. For point P to be socond maxima, the value of λ would be (
$D \gg d$ and $d \gg \lambda$)

A. 6
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

19. An iron load of 2 Kg is suspended in the air from the free end of a sonometer wire of
length 1 m.A tuning fork of frequency 256 Hz , is
in resonace with $\frac{1}{\sqrt{7}}$ times the length of the
sonometer wire. If the looad is immersed in
water, the length of the wire in metre that will
be in resonance with the same tuning fork is
(specific gravity of iron=8)
A. $\sqrt{8}$
B. $\sqrt{6}$
C. $\frac{1}{\sqrt{6}}$
D. $\frac{1}{\sqrt{8}}$

Answer: D

20. As shown in the figure, a chain of mass m is
placed on a smooth quarter circular portion of
radius R. End A is tied with a wedge while the
remaining chain is free, then the minimum
work required to be done by the external agent to make the chain horizontal keeping
point A fixed, is

A. $m g R$
B. $\mathrm{mg} \frac{2 R}{\pi}$
C. $m g \sqrt{2} \frac{2 R}{\pi}$
D. None

Answer: B

- Watch Video Solution

21. A standerd cell emf 1.08 V is balance by the
potential difference across 91 cm of a meter long wire applied by a cell of emf $2 V$ through a series resistor of resistance 2Ω. The internal resistance of the cell is zero. Find the resistance per unit length of the potentiometer wire.
22. All the edges of a block with parallel faces are unequal. Its longest edge is twice its shortest edge. The ratio of the maximum to minimum resistance between parallel faces is.

D Watch Video Solution

23. A projectile of mass m is fired from the
surface of the earth at an angle $\alpha=60^{\circ}$ from
the vertical. The initial speed v_{0} is equal to
$\sqrt{G M_{e}}$
$\sqrt{\frac{G M_{e}}{R_{e}}}$. How high does the projectile rise ?
Neglect air resistance and the earth's rotation.

- Watch Video Solution

24.

Three rods $A B, B C$ and $B D$ of same length I and
cross section A are arranged as shown. The end D is immersed in ice whose mass is 440 g and is at $0^{\circ} C$. The end C is maintained at $100^{\circ} \mathrm{C}$. Heat is supplied at constant rate of $200 \mathrm{cal} / \mathrm{s}$. Thermal conductivities of $A B, B C$ and BD are $\mathrm{K}, 2 \mathrm{~K}$ and $K / 2$, respectively Time after which whole ice will melt is (

$$
\left.K=100 \mathrm{cal} / \mathrm{m}-s^{\circ} C A=10 \mathrm{~cm}^{2}, l=1 \mathrm{~cm}\right)
$$

D Watch Video Solution

25. The binding energy per nucleon of O^{16} is
7.97 MeV and that of O^{17} is 7.75 MeV . The energy (in MeV) required to remove a neutron from O^{17} is.

- Watch Video Solution

