©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 62

Physics

1. In the nth orbit of hydrogen atom, find the
ratio of the radius of the electron orbit and de-Broglie wavelength associated with it.
A. $\frac{n}{2 \pi}$
B. $\frac{n^{2}}{2 \pi}$
C. $\frac{1}{2 \pi n}$
D. $\frac{1}{2 \pi n^{2}}$

Answer: A

- Watch Video Solution

2. Two particles A and B of equal mass m are attached by a string of length $2 l$ and initially placed over a smooth horizontal table in the
position shown in fig. particle B is projected across the table with speed u perpendicular to
$A B$ as shown in the figure. find the velocities
of each particle after the string becomes taut
and the magnitude of the impulse tension.

A. $\frac{u \sqrt{3}}{4}$
B. $u \sqrt{3}$
C. $\frac{u \sqrt{3}}{2}$
D. $\frac{u}{2}$

Answer: A

D Watch Video Solution

3. Tangental acceleration of a particle moving
in a circle of radius 1 m varies with time t as
shown in figure (initial velocity of the particle is zero). Time after which total acceleration of particle makes an angle of 30° with radial
acceleration is

A. 4 s
B. $\frac{4}{3} s$
C. $2^{(2 / 3)} s$
D. $\sqrt{2} s$

Answer: D

D Watch Video Solution

4. The block shown in the diagram has a mass
of $2 \mu \mathrm{~g}$ and a charge of $2 \times 10^{-9} \mathrm{C}$. If the block
is given an initial velocity of $2 m s^{-1}$ in the x direction at $\mathrm{t}=0$ and an electric field of
$2 N C^{-1}$ is switched on in the x - direction, then the range (R) of the block on the ground
will be

A. 4 m
B. 1 m
C. 2 m
D. 3 m

Answer: D

5. Mutual inductance in the figure shown is -

A. Zero
B. $\frac{\mu_{0} b}{2 \pi} \log _{e} \cdot \frac{a}{b}$

$$
\begin{aligned}
& \text { C. } \frac{\mu_{0} b}{2 \pi y} \log _{e}\left(1+\frac{b}{a}\right) \\
& \text { D. } \frac{\mu_{0} b}{2 \pi} \log _{e}\left(1+\frac{a}{b}\right)
\end{aligned}
$$

Answer: D

D Watch Video Solution

6. A cavity of radius $R / 2$ is made inside a solid sphere of radius R. The centre of the cavity is
located at a distance $R / 2$ from the centre of
the sphere. The gravitational force on a particle of a mass ' m ' at a distance $R / 2$ from
the centre of the sphere on the line joining both the centres of sphere and cavity is (opposite to the centre of cavity). [Here $g=G M / R^{2}$, where M is the mass of the solid sphere]
A. $\frac{m g}{2}$
B. $\frac{3 m g}{8}$
C. $\frac{m g}{16}$
D. None of these

Answer: B
7. Find the change in the temperature on the

Fahrenheit scale and on Kelvin scale, if an iron piece is heated from $30^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$.
A. $108^{\circ} F, 60 K$
B. $100^{\circ} \mathrm{F}, 55 \mathrm{~K}$
C. $100^{\circ} F, 65 K$
D. $60^{\circ} F, 108 K$

- Watch Video Solution

8. For two thermodynamic process temperature and volume diagram are given. In
first process, it is a straight line having initial and final coordinates as $\left(V_{0}, T_{0}\right)$ and
$\left(2 V_{0}, 2 T_{0}\right)$, where as in second process it is a rectangular hyperbola having initial and final coordinates $\left(V_{0}, T_{0}\right)$ and $\left(2 V_{0}, T_{0} / 2\right)$. Then
ratio of work done in the two process must be

A. $1: 2$
B. 2:1
C. 1:1
D. None of these

Answer: B
9. Consider a particle moving in the $x-y$ plane according to $r=r(\cos \omega t \hat{i}+\sin \omega t \hat{j})$, where r and ω are constants. Find the trajectory, the velocity, and the acceleration.

A. Perpendicular to the velocity
B. Parallel to the velocity
C. Directed away from the origin
D. Perpendicular to the position vector

Answer: A

D Watch Video Solution

10. The activity of a radioactive element decreases in 10 years to $1 / 5$ of initial activity
A_{0}. After further next 10 years, its activity will be
A. $\frac{A_{0}}{4}$
B. $\frac{A_{0}}{10}$
C. $\frac{A_{0}}{15}$
D. $\frac{A_{0}}{25}$

Answer: D

D Watch Video Solution

11. A ring of the radius r is suspended from a point on its circumference. If the ring is made to oscillate in the plane of the figure, then the
angular frequency of these small oscillations is

A. $\sqrt{\frac{2 g}{3 r}}$
B. $\sqrt{\frac{g}{2 r}}$
C. $\sqrt{\frac{5 g}{4 r}}$
D. $\sqrt{\frac{4 g}{3 r}}$

Answer: B

- Watch Video Solution

12. Light of frequency $7.21 \times 10^{14} \mathrm{~Hz}$ is incident on a metal surface. Electrons with a maximum speed of $6.0 \times 10^{5} \mathrm{~ms}^{-1}$ are ejected from the surface. What is the threshold frequency for photoemission of electrons?

$$
h=6.63 \times 10^{-34} \mathrm{Js}, m_{e}=9.1 \times 10^{-31} \mathrm{~kg} .
$$

A. $4.74 \times 10^{14} \mathrm{~Hz}$
B. $5.74 \times 10^{15} \mathrm{~Hz}$
C. $6.84 \times 10^{13} \mathrm{~Hz}$
D. $4.84 \times 10^{14} \mathrm{~Hz}$

Answer: A

D Watch Video Solution
13. A point object is kept at the first focus of a convex lens. If the lens starts moving towards
right with a constant velocity, the image will

A. always move towards right
B. always move towards left
C. first move towards right and then

towards left

D. first move towards left and then towards
right

Answer: D

D Watch Video Solution

14. A wheel of radius R rolls on the ground
with a uniform velocity v. The relative
acceleration of topmost point of the wheel
with respect to the bottommost point is:
A. $\frac{v^{2}}{R}$
B. $\frac{2 v^{2}}{R}$
C. $\frac{v^{2}}{2 R}$
D. $\frac{4 v^{2}}{R}$

Answer: B

- Watch Video Solution

15. The current gain α of a transistor in common base mode is 0.995 . Its gain .. in the common emitter mode is
A. 200
B. 99

C. 199

D. None of these

Answer: C

D Watch Video Solution

16. A gas is filled in a cylinder. its temperature
is increased by 20% on the Kelvin scale and
volume is reduced by 10% How much percentage of the gas has to leak for pressure to remind constant?
A. 30%
B. 40%
C. 15%
D. 25%

Answer: D

D Watch Video Solution

17. The viscosity η of a gas depends on the
long - range attractive part of the intermolecular force, which varies with
molecular separation r according to
$F=\mu r^{-n}$ where n is a number and μ is a constant. If η is a function of the mass m of the molecules, their mean speed v, and the constant μ than which of the following is correct-

$$
\begin{aligned}
& \text { A. } \eta \propto m^{n+1} v^{n+3} \mu^{n-2} \\
& \text { B. } \eta \propto m^{\frac{n+1}{n-1}} v^{\frac{n+3}{n-1}} \mu^{\frac{-2}{n-1}} \\
& \text { C. } \eta \propto m^{n} v^{-n} \mu^{-2} \\
& \text { D. } \eta \propto m v \mu^{-n}
\end{aligned}
$$

- Watch Video Solution

18. Interference fringes are produced on a screen by using two light sources of intensities / and 9/. The phase difference between the beams $\frac{\pi}{2}$ is at point P and π at point Q on the screen. The difference between the resultant intensities at point P and Q is
A. 21
B. 41
C. 61
D. 81

Answer: C

D Watch Video Solution

19. A standing wave having 3 nodes and 2 antinodes is formed between two atoms
having a distance $1.21 \AA$ between them. The wavelength of the standing wave is
A. $1.21 \AA$
B. $1.41 \AA$
C. $6.05 \AA$
D. $3.63 \AA$

Answer: A

D Watch Video Solution

20. A block of mass M is kept on a rough horizontal surface and is attached with massless spring of force constant k.The
minimum constant force applied on the other end of the spring to lift the block is
A. Mg
B. $\frac{M g}{2}$
C. 2 Mg
D. $M g(1+k)$

Answer: B
(Watch Video Solution
21. A battery is charged at a potential fo 15 V
for 8 h when the current folwing is 10A. The
battery on discharge supplies a current of 5A
fo 15 h . The mean terminal voltage during discharge is 14 V . The watt-hour efficiency of the battery is

- Watch Video Solution

22. A particle leaves the origin with an initial velodty $v=(3.00 \hat{i}) \mathrm{m} / \mathrm{s}$ and a constant
acceleration $a=(-1.00 \hat{i}-0.500 \hat{j}) m / s^{2}$.
When the particle reaches its maximum x coordinate, what are
(a) its velocity and (b) its position vector?

- Watch Video Solution

23. The magnetic induction at the centre of a current carrying circular coil of radius 10 cm is
$5 \sqrt{5}$ times the magnetic induction at a point on its axis. The distance of the point from the centre of the soild in cm is

Watch Video Solution

24. An 80 kg person is parachuting and is experiencing a downward acceleration of
$2.8 \mathrm{~m} \mathrm{~s}^{-2}$. The mass of the parachute is 5 kg .
If the upward force on the open parachute is
$k \times 10^{2} N$, then what is the value of k ?
(Take $g=9.8 m s^{-2}$)

- Watch Video Solution

25. A liquid drop having surface energy E is
spread into 512 droplets of same size. The final
surface energy of the droplets is
