đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 63

Physics

1. Wavelength of first line in Lyman series is λ.

What is wavelength of first line in Balmer
series?

5
A. $\frac{5}{27} \lambda$
B. $\frac{36}{5} \lambda$
C. $\frac{27}{5} \lambda$
D. $\frac{5}{36} \lambda$

Answer: C

D Watch Video Solution

2. Two point masses connected by an ideal string are placed on a smooth horizontal surface as shown in the diagram. A sharp
impulse of $10 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ is given to the 5 kg mass at an angle of 60° to the line joining the masses. The velocity of the 10 kg mass just after the impulse will be

A. $\frac{2}{3} m s^{-1}$
B. $\frac{1}{3} m s^{-1}$

C. $2 m s^{-1}$

D. zero

Answer: B

D Watch Video Solution

3. A small block of mass m slides along a smooth frictional track as shown in the figure.

If it starts from rest at P, what is the resultant
force acting on it at Q ?

A. $\sqrt{70} m g$
B. $\sqrt{60} m g$
C. $\sqrt{75} \mathrm{mg}$
D. $\sqrt{65} \mathrm{mg}$

Answer: D

Watch Video Solution

4. The length of the potentiometer wire is 600 cm and a current of 40 mA is flowing in it.

When a cell of emf 2 V and internal resistance
10Ω is balanced on this potentiometer the balance length is found to be 500 cm . The resistance of potentiometer wire will be
A. 20Ω
B. 40Ω
C. 60Ω

D. 80Ω

Answer: C

D Watch Video Solution

5. A transformer is used to light a 100 W and

110 V lamp from a 220 V mains. If the main
current is $0.5 A$, the Efficiency of the transformer is approximately:

$$
\text { A. } 30 \%
$$

B. 50%
C. 90%
D. 10%

Answer: C

D Watch Video Solution

6. A point charge q is placed inside a conducting spherical shell of inner radius $2 R$ and outer radius $3 R$ at a distance of R fro the centre of the shell. The electric potential at
the centre of shell will (potential at infinity is
zero).

> A. $\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{2 R}\right)$
> B. $\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{4 q}{3 R}\right)$
> C. $\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{5 q}{6 R}\right)$
> D. $\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{5 q}{3 R}\right)$

Answer: C

D Watch Video Solution

7. A body is moving from rest under constant acceleration and let S_{1} be the displacement in the first $(p-1)$ sec and S_{2} be the displacement in the first p sec. The displacement in $\left(p^{2}-p+1\right)$ sec. will be
A. $S_{1}+S_{2}$
B. $\sqrt{S_{1} S_{2}}$
C. $S_{1}-S_{2}$
D. None of these

Answer: A
8. A body hanging from a massless spring stretches it by 3 cm on earth's surface. At a place 800 km above the earth's surface, the same body will stretch the spring by
(Radius of Earth $=6400 \mathrm{~km}$)
A. $\left(\frac{34}{27}\right) c m$
B. $\left(\frac{64}{27}\right) \mathrm{cm}$
C. $\left(\frac{27}{64}\right) \mathrm{cm}$

$$
\text { D. }\left(\frac{27}{34}\right) c m
$$

Answer: B

D Watch Video Solution

9. A black body of mass 34.38 g and surface
area $19.2 \mathrm{~cm}^{2}$ is at an intial temperature of

400 K . It is allowed to cool inside an evacuated enclosure kept at constant temperature 300 K .

The rate of cooling is $0.04^{\circ} \mathrm{C} / \mathrm{s}$. The sepcific heat of the body $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ is
(Stefan's

$$
\left.\sigma=5.73 \times 10^{-8} W m^{-2} K^{-4}\right)
$$

A. 2800
B. 2100
C. 1400
D. 1200

Answer: C
(Watch Video Solution
10. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio
C_{P} / C_{V} for the gas is
A. $\frac{3}{2}$
B. $\frac{4}{3}$
C. 2
D. $\frac{5}{3}$

Answer: A
11. A circular coil of radius R carries a current i
. The magnetic field at its centre is B. The distance from the centre on the axis of the coil where the magnetic field will be $B / 8$ is
A. $R \sqrt{2}$
B. $R \sqrt{3}$
C. 2 R
D. 3R

Answer: B

D Watch Video Solution

12. The masses $m_{1} m_{2}$ and m_{3} of the three
bodies shown in fig. Are 5,2 and 3 kg respectively Calculate the valuse of tension $T_{1} T_{2}$ and T_{3} when (i) the whole system is going upward with an acceleration of $2 m / s^{2}$
(ii) the whole system is stationary

$\left(g=9.8 m / s^{2}\right)$.

A. 29.4 N, $98 \mathrm{M}, 98 \mathrm{~N}$
B. $98 \mathrm{~N}, 49 \mathrm{~N}, 29.4 \mathrm{M}$
C. $118 \mathrm{~N}, 59 \mathrm{~N}, 35.4 \mathrm{~N}$
D. $35.4 \mathrm{~N}, 118 \mathrm{~N}, 59 \mathrm{~N}$

Answer: C

D Watch Video Solution

13. Calculate the binding energy per nucleon of $\cdot{ }_{20}^{40} C a$. Given that mass of $\cdot{ }_{20}^{40} C a$ nucleus $=39.962589 u$, mass of proton $=1.007825 u$.

Mass of Neutron $=1.008665 u$ and $1 u$ is equivalent to 931 MeV .
A. 18.32 MeV
B. 8.55 MeV
C. 9.94 MeV
D. 14.72 MeV

Answer: B
(Watch Video Solution
14. A particle is subjected simultaneously to
two SHMs, one along the x - axis and the other
along the y - axis. The two vibrations are in
phase and have unequal amplitudes. The particle will execute
A. Straight line motion
B. Circular motion
C. Elliptic motion
D. Parabolic motion

Answer: A

- Watch Video Solution

15. If the work functions of three
photosensitive materials are $1 \mathrm{eV}, 2 \mathrm{eV}$ and 3
eV respectively, then the ratio of the respective frequencies of light that produce photoelectrons of the maximum kinetic energy of 1 eV from each of them is
A. $1: 2: 3$
B. 2:3:4
C. $1: 1: 1$
```
D. \(3: 2: 1\)
```


Answer: B

D Watch Video Solution

16. A uniform rod of length 2.0 m specific gravity 0.5 and mass 2 kg is hinged at one end to the bottom of a tank of water (specific gravity $=10$) filled upto a height of 1.0 m as shown in figure. Taking the case $\theta=-0^{\circ}$ the force exerted by the hings on the rod is
$\left(g=10 m / s^{2}\right)$

A. 10.2 N, upwards

B. 4.2 N, downwards

C. 8.3 N downwards

D. 6.2 N , upwards

Answer: C
17. A fish looking up through the water sees
the outside world contained in a circular horizon. If the refractive index of water is $4 / 3$ and the fish is 12 cm below the surface, the radius of this circle in cm is
A. $36 \sqrt{5}$
B. $4 \sqrt{5}$
C. $36 \sqrt{7}$
D. $36 / \sqrt{7}$

Answer: D

D Watch Video Solution

18. A uniform circular disc of radius r placed on
a rough horizontal plane has initial velocity v_{0}
and angular ω_{0} as shown. The disc comes to rest after moving some distance in the

direction of motion. Then

A. The friction force acts in the forward
direction
B. The point of contact of disc with ground
has zero velocity
C. v_{0} must be equal to $\frac{r \omega_{0}}{2}$ in magnitude
D. v_{0} must be equal to $2 r \omega_{0}$ in magnitude

Answer: C

- Watch Video Solution

19. Heat energy is incident on the surface at
the rate of $1000 \mathrm{~J} / \mathrm{min}$. If coefficient of absorption is 0.8 and coefficient of reflection is
0.1 then heat energy transmitted by the surface in 5 minute is
A. 100 J
B. 500 J
C. 700 J
D. 900 J

Answer: B

D Watch Video Solution

20. Dimensions of ohm are same as that of
(where h is Planck's constant and e is charge)
A. $\frac{h^{2}}{e^{2}}$
B. $\frac{h^{2}}{e}$
C. $\frac{h}{e^{2}}$
D. $\frac{h}{e}$

Answer: C

D Watch Video Solution

21. A shell bursts on contact with the gorund and pieces from it fly in all directions with
velocities up to $60 \mathrm{~m} / \mathrm{s}$. Show that a man $180 m$ away is in danger for $6 \sqrt{2} s$.
22. For the circuit shown below, the current (in mA) through the Zener diode is

- Watch Video Solution

23. When an object is viewed with a light of wavelength $6000 \AA$ under a microscope, its
resolving power is 10^{4}. The resolving power of the microscope when the same object is viewed with a light of wavelength $4000 \AA$, is $n \times 10^{3}$. The vlaue of n is

D Watch Video Solution

24. A massless rod $B D$ is suspended by two identical massless strings $A B$ and $C D$ of equal lengths. A block of mass m is suspended at point P such that $B P$ is equal to x, If the
fundamental frequency of the left wire is twice
the fundamental frequency of right wire, then the value of x is :-

- Watch Video Solution

25. The displacement of an object of mass 3 kg is given by the relation $S=\frac{1}{3} t^{2}$, where t is time in seconds. If the work done by the net
force on the object in 2 s is $\frac{p}{q}$ joule, where p and q are smallest integer values, then what is the value of $p+q$?
