©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 70

Physics

1. Energy levels A, B, C of a certain atoms corresponding to increasing values of energy
level i.e., $E_{A}<E_{B}<E_{C}$. If λ_{1}, λ_{2} and λ_{3} are
the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively which of the following statement is correct?
A. $\lambda_{3}=\lambda_{1}+\lambda_{2}$
B. $\lambda_{3}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}$
C. $\lambda_{3}=\sqrt{\lambda_{1} \lambda_{2}}$
D. $\lambda_{3}=\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}$

Answer: B
2. An ammeter, voltmeter and a resistor are connected in series to a cell and the readings are noted as I and V. If another resistor R is connected in parallel with a voltmeter, then
A. I and V increase
B. I increases
C. I and V will remain same
D. I decreases
3. The resonant frequency of a circuit is f. If
the capacitance is made 4 times the initial
values, then the resonant frequecy will become
A. $\frac{f_{0}}{4}$
B. $2 f_{0}$
C. f_{0}
D. $\frac{f_{0}}{2}$

Answer: D

D Watch Video Solution

4. Two cars P and Q start from a point at the same time in a straight line and their position are represented by $x_{p}(t)=a t+b t^{2}$ and
$x_{Q}(t)=f t-t^{2}$. At what time do the cars
have the same velocity?
A. $\frac{a-f}{1+b}$
B. $\frac{a+f}{2(b-1)}$
C. $\frac{a+f}{2(l+b)}$
D. $\frac{f-a}{2(l+b)}$

Answer: D

D Watch Video Solution

5. A rocket is fired with a speed $u=3 \sqrt{g R}$ from the earth surface. What will be its speed at interstellar space?
A. zero

> B. $\sqrt{2 g R}$
> C. $\sqrt{7 g R}$
> D. $\sqrt{3 g R}$

Answer: C

D Watch Video Solution

6. A black rectangular surface of area A emits
energy E per second at $27^{\circ} \mathrm{C}$. If length and breadth are reduced to one third of initial
value and temperature is raised to $327^{\circ} \mathrm{C}$,
then energy emitted per second becomes

$$
\begin{aligned}
& \text { A. } \frac{4 E}{9} \\
& \text { B. } \frac{7 E}{9} \\
& \text { C. } \frac{10 E}{9} \\
& \text { D. } \frac{16 E}{9}
\end{aligned}
$$

Answer: D

D Watch Video Solution

7. The ratio of the speed of sound in nitrogen

 gas to that in helium gas, at 300 K isA. $\sqrt{\frac{2}{7}}$
B. $\sqrt{\frac{1}{7}}$
C. $\frac{\sqrt{3}}{5}$
D. $\frac{\sqrt{6}}{5}$

Answer: C

- Watch Video Solution

8. A very long straight conducting wire, lying along the z-axis, carries a current of 2 A . The integral $\oint \vec{B} \cdot d \vec{l}$ is computed along the straight line $P Q$, where P has the coordinates
$(2 c m, 0,0)$ and Q has the coordinates
$(2 c m, 2 c m, 0)$. The integral has the magnitude (in SI units) ${ }^{\text { }}$
A. zero
B. $8 \pi \times 10^{-7}$
C. $2 \pi \times 10^{-7}$
D. $\pi \times 10^{-7}$

Answer: D

D Watch Video Solution

9. At the instant $t=0$, a force $F=k t$ (k is a
constant) acts on a small body of mass m
resting on a smooth horizontal surface. The
time, when the body leaves the surface is

A. $m g k \sin \alpha$
B. $\frac{k \sin \alpha}{m g}$
C. $\frac{m g \sin \alpha}{k}$
D. $\frac{m g}{k \sin \alpha}$

Answer: D

- Watch Video Solution

10. Assuming that about 20 MeV of energy is
${ }^{-1} H^{2}$ consumed per day in a future fusion
reactor of powder $1 M W$ would be approximately
A. 0.001 g
B. 0.1 g
C. 10.0 g
D. 1000 g

Answer: B

D Watch Video Solution
11. A block is hanged from spring in a cage.

Elongation in spring is ' x_{1} ' and ' x_{2} ' when
cage moves up and down respectively with
same acceleration. The expansion in spring
when the cage move horizontally with same acceleration -
A. $\frac{x_{1}+x_{2}}{2}$
B. $\sqrt{\frac{x_{1}^{2} x_{2}^{2}}{2}}$
C. $\sqrt{\frac{x_{1}^{2}+x_{2}^{2}}{2}}$
D. $\sqrt{x_{1} x_{2}}$

Answer: C

D Watch Video Solution

12. Two communicating vessels contain mercury. The diameter of one vessel in n times
larger then the diameter of the other. A column of water of height h is poured into the
left vessel. The mercury level will rise in the right hand vessel (s = relative density of
mercury and $\rho=$ density of water) by

A. $\frac{n^{2} h}{(n+1)^{2} s}$
B. $\frac{h}{\left(n^{2}+1\right) s}$
C. $\frac{h}{(n+1)^{2} s}$
D. $\frac{h}{n^{2} s}$

Answer: B
13. In the figure shown, for an angle of incidence 45°, at the top surface, what is the minimum refractive index needed for the internal reflection at vertical face?

A. $\frac{\sqrt{2}+1}{2}$
B. $\sqrt{\frac{1}{2}}$
C. $\sqrt{\frac{3}{2}}$
D. $\sqrt{2}+1$

Answer: C

D Watch Video Solution

14. A weightless rod of length I carries two equal masses m one fixed at the end and other in the middle ofhte rod. The rod can revolve in
a vertical plane about A. Then, horizontal velocity which must be imparted to end C of
rod to deflect it to horizontal position is

A. $\sqrt{\frac{12}{5} g l}$
B. $\sqrt{3 g l}$
C. $\sqrt{\frac{16}{5} g l}$
D. $\sqrt{2 g l}$

Answer: A

D Watch Video Solution

15. In a common emitter transistor amplifier,
the output resistance is $500 K \Omega$ and the
current gain $\beta=49$. If the power gain of the amplifier is 5×10^{6}, the input resistance is
A. 165Ω
B. 198Ω
C. 225Ω

D. 240Ω

Answer: D

D Watch Video Solution

16. A calorimeter contains 0.2 kg of water at $30^{\circ} \mathrm{C} 0.1 \mathrm{~kg}$ of water at $60^{\circ} \mathrm{C}$ is added to it, the mixture is well stirred and the resulting temperature is found to be $35^{\circ} \mathrm{C}$. The thermal capacity of the calorimeter is:

$$
\text { A. } 6300 \mathrm{~J} \mathrm{~K}^{-1}
$$

B. $1260 \mathrm{~J} \mathrm{~K}^{-1}$

C. $4200 \mathrm{~J} \mathrm{~K}^{-1}$
D. $3200 \mathrm{~J} \mathrm{~K}^{-1}$

Answer: B

D Watch Video Solution

17. The dimensional formula of mobility is

$$
\text { A. }\left[M^{-1} L^{1} T^{2} A^{1}\right]
$$

$$
\begin{aligned}
& \text { B. }\left[M^{1} L^{-1} T^{-2} A^{-1}\right] \\
& \text { C. }\left[M^{1} L^{-1} T^{-2} A^{-1}\right] \\
& \text { D. }\left[M^{-1} L^{0} T^{2} A^{1}\right]
\end{aligned}
$$

Answer: D

D Watch Video Solution

18. The intensity ratio of two coherent sources
of light is p. They are interfering in some region and produce interference patten. Then the fringe visibility is
A. $\frac{1+P}{2 \sqrt{P}}$
B. $\frac{2 \sqrt{P}}{1+P}$
C. $\frac{P}{1+P}$
D. $\frac{2 P}{1+P}$

Answer: B

- Watch Video Solution

19. The fundamental frequency of a closed organ pipe of length 20 cm is equal to the second overtone of an organ pipe open at
both the ends. The length of organ pipe open
at both the ends is
A. 80 cm
B. 100 cm
C. 120 cm
D. 140 cm

Answer: C

- Watch Video Solution

20. An engine of power 58.8 kW pulls a train of mass $2 \times 10^{5} \mathrm{~kg}$ with a velocity of $36 \mathrm{kmh}^{-1}$. The coefficient of static friction is
A. 0.3
B. 0.03
C. 0.003
D. 0.0003

Answer: C

D Watch Video Solution
21. A 5000 kg rocket is set of vertical firing. The exhaust speed is $800 \mathrm{~ms}^{-1}$. To give an initial upward acceleration of $20 \mathrm{~ms}^{-2}$, the amount of gas ejected per second to supply the needed thrust will be (take, $g=10 \mathrm{~ms}^{-2}$)

- Watch Video Solution

22. A particle describes a horizontal circle in a conical funne whoses inner surface is smooth
with speed of $0.5 \mathrm{~m} / \mathrm{s}$. What is the height of the plane of circle from vertex the funnel?

D Watch Video Solution

23. A $10 \mu F$ capacitor is charged to a potential difference of 50 V and is connected to another uncharged capacitor in parallel. Now the common potential difference becomes 20 volt.

The capacitance of second capacitor is

D Watch Video Solution

24. A particle is projected from the earth's surface with a velocity of $50 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle θ with the horizontal. After $2 s$ it just clears a wall $5 m$ high. What is the value of $55 \sin \theta ?\left(g=10 m s^{-2}\right)$

- Watch Video Solution

25. A proton, when accelerated through a potential differnece of $\mathrm{V}=29.6 \mathrm{~V}$, has a wavelength λ associated with it. An $\alpha-$ particle, in order to have the same λ, must be
accelerated through a potential difference of how many volts?
(Watch Video Solution
