©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 73

Physics

1. Imagine an atom made of a proton and a
hypothetical particle of double the mass of
the electron but having the same change as
the electron. Apply the Bohr atom model and consider all possible transitions of this hypothetical particle of the first excited level. the longest wavelength photon that will be emitted has wavelength [given in terms of the

Rydberg constant R for the hydrogen atom] equal to
A. $\frac{9}{5 R}$
B. $\frac{36}{5 R}$
C. $\frac{18}{5 R}$
D. $\frac{4}{R}$

Answer: C

D Watch Video Solution

2. A spherical ball A of mass 4 kg , moving along a straight line strikes another spherical ball B of mass 1 kg at rest. After the collision, A and B move with velocities
$v_{1} m s^{-1}$ and $v_{2} m s^{-1}$ respectively making
angles of 30° and 60° with respect to the original direction of motion of A . The ratio $\frac{v_{1}}{v_{2}}$
will be
A. $\frac{\sqrt{3}}{4}$
B. $\frac{4}{\sqrt{3}}$
C. $\frac{1}{\sqrt{3}}$
D. $\sqrt{3}$

Answer: A

- Watch Video Solution

3. A body of mass 1 kg starts moving from rest
$t=0$ in a circular path of radius 8 m . Its
kinetic energy varies with time as $k=2 t^{2} J$
then magnitude of centripetal acceleration (in
$\left.m / s^{2}\right)$ at $t=2 s$ is.
A. Tangential acceleration $=4 m s^{-2}$
B. Power of all force at $t=2 \mathrm{~s}$ is 8 W
C. First - round is completed in 2 s .
D. Tangential force at $\mathrm{t}=2 \mathrm{~s}$ is 4 N .

Answer: B

D Watch Video Solution

4. A potential difference of 220 V is applied across a rheostat of 12000Ω. The voltmeter V has a resistance of 6000Ω and distance $B C$ is one - fourth of the distance from A to B. The error in the reading of voltmeter is approximately -

A. 27%
B. 10%
C. 40%
D. 15%

Answer: A

D Watch Video Solution

5. The RMS value of AC which when passed through a resistor produces heat, which is twice that produced by a steady current of
1.414A in the same resistor is
A. $2 A$
B. 3.46 A
C. 2.818 A
D. 1.732 A

Answer: A

D Watch Video Solution
6. Two spheres A and B of radius 'a' and 'b' respectively are at same electric potential. The
ratio of the surface charge densities of A and
B is

> A. $\frac{b}{a}$
> B. $\frac{a}{b}$
> C. $\frac{a^{2}}{b^{2}}$
> D. $\frac{b^{2}}{a^{2}}$

Answer: A
(Watch Video Solution
7. Two uniformly long charged wires with linear densities λ and 3λ are placed along x and Y axis respectively. Determined the slope of electric field at any point on the I ine $y=\sqrt{3} x$
A. $3 \sqrt{3}$
B. $\frac{\sqrt{3}}{3 \sqrt{2}}$
C. $\frac{1}{3 \sqrt{3}}$
D. $\sqrt{3}$

Answer: C

- Watch Video Solution

8. A particle A of mass ' m ' and charge ' q ' is accelerated by a potential difference of 50 V .

Another particle B of mass ' 4 m ' and charge ' q ' is accelerated by a potential difference of 2500 V . The ratio of de-Broglie wavelengths $\frac{\lambda_{A}}{\lambda_{B}}$ is close to :
A. 0.07
B. 10.00
C. 4.47

D. 14.14

Answer: D

D Watch Video Solution

9. A current I is flowing thorugh the loop. The
direction of the current and the shpae of the
loop are as the shown in the figure. The magnetic fild at the centre of the loop is $\frac{\mu_{0} I}{R}$ times
$\left(M A=R, M B=2 R, \angle D M A=90^{\circ}\right)$

A. $\frac{5}{16} \frac{\mu_{0} i}{R}$, but out of the plane of the

paper

B. $\frac{5}{16} \frac{\mu_{0} i}{R}$, but into the plane of the paper
C. $\frac{7}{16} \frac{\mu_{o} i}{R}$, but out of the plane of the paper
D. $\frac{7}{16} \frac{\mu_{o} i}{R}$, but into the plane of the paper

Answer: D

D Watch Video Solution

10. A small bead of mass $m=1 \mathrm{~kg}$ is free to move on a circular hoop. The circular hoop has
centre at C and radius $\mathrm{r}=1 \mathrm{~m}$ and it rotates
about a fixed vertical axis. The coefficient of
friction between bead and hoop is $\mu=0.5$.

The maximum angular speed of the hoop for
which the bead does not have relative motion
with respect to hoop, at the position shown in
figure is: (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

A. $(5 \sqrt{2})^{\frac{1}{2}}$
B. $(10 \sqrt{2})^{\frac{1}{2}}$
C. $(15 \sqrt{2})^{\frac{1}{2}}$
D. $(30 \sqrt{2})^{\frac{1}{2}}$

Answer: D

- Watch Video Solution

11. If a stone s thrown at a point which is at a distance d away and at a height h above the point from where the stone starts, then what
is the value of initial speed u if the stone is
lauched at angle θ ?

A. $\frac{g}{\cos t h e a t} \sqrt{\frac{d}{2(d \tan \theta-h)}}$
B. $\frac{d}{\cos \theta} \sqrt{\frac{g}{2(d \tan \theta-h)}}$
C. $\sqrt{\frac{g d^{2}}{h \cos ^{2} \theta}}$
D. $\sqrt{\frac{g d^{2}}{(d-h)}}$

Answer: B

D Watch Video Solution

12. Surface of certain metal is first illuminated
with light of wavelength $\lambda_{1}=350 \mathrm{~nm}$ and then, by light of wavelength $\lambda_{2}=540 \mathrm{~nm}$. It is
found that the maximum speed of the photo electrons in the two cases differ by a factor of
13. The work function of the metal (in eV) is
close to :
(Energy of photon $=\frac{1240}{\lambda(\text { in } \mathrm{nm})} E v$
A. 2.5
B. 1.8
C. 5.6
D. 1.4

Answer: B

- Watch Video Solution

13. An electron (mass $=9.1 \times 10^{-31} \mathrm{~kg}$,
charge $=1.6 \times 10^{-19} C$) experiences no
deflection if subjected to an electric field of
$3.2 \times 10^{5} \frac{\mathrm{~V}}{\mathrm{~m}}, \quad$ and a magnetic fields of
$2.0 \times 10^{-3} W \frac{b}{m^{2}}$. Both the fields are normal
to the path of electron and to each other. If
the electric field is removed, then the electron
will revolve in an orbit of radius
A. 45 m
B. 4.5 m
C. 0.45 m

D. 0.045 m

Answer: C

D Watch Video Solution

14. Four holes of radius R are cut from a thin square plate of side $4 R$ and mass M. The moment of inertia of the remaining portion
about z-axis is :

A. $\frac{\pi}{12} M R^{2}$
B. $\left(\frac{4}{3}-\frac{\pi}{4}\right) M R^{2}$
C. $\left(\frac{4}{3}-\frac{\pi}{6}\right) M R^{2}$
D. $\left(\frac{8}{3}-\frac{10 \pi}{16}\right) M R^{2}$

Answer: D

D Watch Video Solution

15. Two identical containers A and B having same volume of an ideal gas at same temperature have mass of the gas as m_{1} and m_{2} respectively and $2 m_{1}=3 m_{2}$. The gas in each cylinder expands isomthermally to double of its volume. If change in pressure in A is 300 Pa , then the change in pressure in B is
A. 200 Pa
B. 300 Pa
C. 400 Pa
D. 500 Pa

Answer: A

D Watch Video Solution
16. The air column in a pipe closed at one end
is made to vibrate in its second overtone by a
tuning fork of frequency 440 Hz . The speed of
sound in air is $330 \mathrm{~ms}^{-1}$. End corrections may
be neglected. Let P_{0} denote the mean
pressure at any point in the pipe, and ΔP the maximum amplitude of pressure variation.
(a) What the length L of the air column.
(b) What is the amplitude of pressure variation at the middle of the column?
(c) What are the maximum and minimum pressures at the open end of the pipe?
(d) What are the maximum and minimum pressures at the closed end of the pipe?

$$
\text { A. } \frac{\Delta p_{0}}{\sqrt{2}}
$$

B. $\frac{\Delta p_{0}}{\sqrt{3}}$
C. $\frac{\Delta p_{0}}{2}$
D. $\frac{\Delta p_{0}}{3}$

Answer: A

D Watch Video Solution

17. Two masses m and M are attached to the strings as shown in the figure. If the system is
in equilibrium, then

A. $\tan \theta=1+\frac{2 M}{m}$
B. $\tan \theta=1-\frac{2 m}{M}$
C. $\tan \theta=1-\frac{M}{2 m}$
D. $\tan \theta=1+\frac{m}{2 M}$

Answer: A

D Watch Video Solution

18. Activity of a radioactive sammple decreases
to $(1 / 3)$ rd of its original value in 3 days. Then, in 9 days its activity will become
A. $\frac{1}{27}$ of the original value
B. $\frac{1}{9}$ of the original value
C. $\frac{1}{8}$ of the original value
D. $\frac{1}{3}$ of the original value

Answer: A

D Watch Video Solution

19. The glass of optical fibre has a refractive
index 1.55 and cladding with another glass of refractive index 1.51. When the surrounding medium is air, the numerical aperture will be
A. 0.625
B. 0.350
C. 0.528
D. 0.704

Answer: B

D Watch Video Solution

20. Liquid oxygen at $50 K$ is heated to $300 K$ at
constant pressure of 1 atm . The rate of
heating is constant. Which of the following

temperature with time?

Answer: C

- Watch Video Solution

21. Two spheres of same material have radius 1
m and 4 m and temperature 4000 K and 2000
K respectively. The energy radiated per second by the first sphere is

- Watch Video Solution

22. A concave mirror of focal length 20 cm and
a convex lens of focal length 10 cm are kept
with their optic axes parallel but separated by
0.5 mm as shown in the figure. The distance
between the the lens and mirror in 10 cm . An
object of height 3 mm is placed on the optic axis of lens at a distance between the lens and mirror is 10 cm . An object of height 3 mm is placed on the optic axis of lens at a distance

15 cm from the lens. Find the length of the
image formed the mirror in mm.

D Watch Video Solution

23. Figure shows the variation of the internal energy U with the density ρ of an ideal monoatomic gas for a therodynamic process
$A B$. Process $A B$ is a part of arectangular hyperbola. Find the work done (in joule) by gas

in process $A B$.

- Watch Video Solution

24. A stationary body explodes in to four identical fragments such that three of them fly mutually perpendicular to each other, each
with same $K E\left(E_{0}\right)$. The energy of explosion will be

D Watch Video Solution

25. A lift ascends with constant acceleration
$a=1 m s^{-2}$, then with constant velocity and
finally, it stops under constant retardation
$a=1 m s^{-2}$. If total distance ascended by the
lift is 7 m , in a total time of the journey is 8 s .

Find the time (in second) for which lift moves
with constant velocity.

